scholarly journals Inconsistent response of soil bacterial and fungal communities in aggregates to litter decomposition during short-term incubation

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8078 ◽  
Author(s):  
Jingjing Li ◽  
Chao Yang

Background Soil aggregate-size classes and microbial communities within the aggregates are important factors regulating the soil organic carbon (SOC) turnover. However, the response of soil bacterial and fungal communities in aggregates to litter decomposition in different aggregate-size classes is poorly understand. Methods Soil samples from un-grazed natural grassland were separated into four dry aggregate classes of different sizes (2–4 mm, 1–2 mm, 0.25–1 mm and <0.25 mm). Two types of plant litter (leaf and stem) of Leymus chinensis were added to each of the four aggregate class samples. The CO2 release rate, SOC storage and soil microbial communities were measured at the end of the 56-day incubation. Results The results showed that the 1–2 mm aggregate had the highest bacterial Shannon and CO2 release in CK and leaf addition treatments, and the SOC in the <0.25 mm aggregate was higher than that in the others across the treatments. The relative abundance of Ascomycota was higher in the 2–4 mm and <0.25 mm aggregates than in the 1–2 mm and 0.25–1 mm aggregates in the treatment without litter addition, and the relative abundance of Aphelidiomycota was lower in the 2–4 mm and <0.25 mm aggregates than in the 1–2 mm and 0.25–1 mm aggregates. Also, litter addition increased the relative abundance of Proteobacteria and Bacteroidetes, but decreased the relative abundance of Acidobacteria, Gemmatimonadetes, and Actinobacteria. The relative abundance of Ascomycota and Aphelidiomycota increased by more than 10% following leaf litter addition. The bacterial Shannon index had a significantly positive and direct effect on SOC concentration and CO2 release, while the fungal Shannon index was significantly correlated with SOC concentration. Our results indicate that the soil bacterial diversity contributes positively to both carbon emissions and carbon storage, whereas soil fungal diversity can promote carbon storage and decrease carbon emissions.

2017 ◽  
Author(s):  
Quanchao Zeng ◽  
Yang Liu ◽  
Shaoshan An

The forest ecosystem is the main component of terrestrial ecosystems. The global climate and the functions and processes of soil microbes in the ecosystem are all influenced by litter decomposition. The effects of litter decomposition on the abundance of soil microorganisms remain unknown. Here, we analyzed soil bacterial communities during the litter decomposition process in an incubation experiment under treatment with different litter quantities based on annual litterfall data (normal quantity, 200 g/(m2/yr); double quantity, 400 g/(m2/yr) and control, no litter). The results showed that litter quantity had significant effects on soil carbon fractions, nitrogen fractions, and bacterial community compositions, but significant differences were not found in the soil bacterial diversity. The normal litter quantity enhanced the relative abundance of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes, Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were significantly less abundant in the normal quantity litter addition treatment, and were subsequently more abundant in the double quantity litter addition treatment. The bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-, and Delta) to Actinobacteria-dominant during the decomposition of the normal quantity of litter. A cluster analysis showed that the double litter treatment and the control had similar bacterial community compositions. These results suggested that the double quantity litter limited the shift of the soil bacterial community. Our results indicate that litter decomposition alters bacterial dynamics under the accumulation of litter during the vegetation restoration process, which provides important significant guidelines for the management of forest ecosystems.


2017 ◽  
Author(s):  
Quanchao Zeng ◽  
Yang Liu ◽  
Shaoshan An

The forest ecosystem is the main component of terrestrial ecosystems. The global climate and the functions and processes of soil microbes in the ecosystem are all influenced by litter decomposition. The effects of litter decomposition on the abundance of soil microorganisms remain unknown. Here, we analyzed soil bacterial communities during the litter decomposition process in an incubation experiment under treatment with different litter quantities based on annual litterfall data (normal quantity, 200 g/(m2/yr); double quantity, 400 g/(m2/yr) and control, no litter). The results showed that litter quantity had significant effects on soil carbon fractions, nitrogen fractions, and bacterial community compositions, but significant differences were not found in the soil bacterial diversity. The normal litter quantity enhanced the relative abundance of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes, Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were significantly less abundant in the normal quantity litter addition treatment, and were subsequently more abundant in the double quantity litter addition treatment. The bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-, and Delta) to Actinobacteria-dominant during the decomposition of the normal quantity of litter. A cluster analysis showed that the double litter treatment and the control had similar bacterial community compositions. These results suggested that the double quantity litter limited the shift of the soil bacterial community. Our results indicate that litter decomposition alters bacterial dynamics under the accumulation of litter during the vegetation restoration process, which provides important significant guidelines for the management of forest ecosystems.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3777 ◽  
Author(s):  
Quanchao Zeng ◽  
Yang Liu ◽  
Shaoshan An

The forest ecosystem is the main component of terrestrial ecosystems. The global climate and the functions and processes of soil microbes in the ecosystem are all influenced by litter decomposition. The effects of litter decomposition on the abundance of soil microorganisms remain unknown. Here, we analyzed soil bacterial communities during the litter decomposition process in an incubation experiment under treatment with different litter quantities based on annual litterfall data (normal quantity, 200 g/(m2/yr); double quantity, 400 g/(m2/yr) and control, no litter). The results showed that litter quantity had significant effects on soil carbon fractions, nitrogen fractions, and bacterial community compositions, but significant differences were not found in the soil bacterial diversity. The normal litter quantity enhanced the relative abundance of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes, Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were significantly less abundant in the normal quantity litter addition treatment, and were subsequently more abundant in the double quantity litter addition treatment. The bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-, and Delta) to Actinobacteria-dominant during the decomposition of the normal quantity of litter. A cluster analysis showed that the double litter treatment and the control had similar bacterial community compositions. These results suggested that the double quantity litter limited the shift of the soil bacterial community. Our results indicate that litter decomposition alters bacterial dynamics under the accumulation of litter during the vegetation restoration process, which provides important significant guidelines for the management of forest ecosystems.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7014 ◽  
Author(s):  
Lukas Beule ◽  
Ko-Hsuan Chen ◽  
Chih-Ming Hsu ◽  
Cheryl Mackowiak ◽  
Jose C.B. Dubeux Jr. ◽  
...  

BackgroundCultivars of bahiagrass (Paspalum notatumFlüggé) are widely used for pasture in the Southeastern USA. Soil microbial communities are unexplored in bahiagrass and they may be cultivar-dependent, as previously proven for other grass species. Understanding the influence of cultivar selection on soil microbial communities is crucial as microbiome taxa have repeatedly been shown to be directly linked to plant performance.ObjectivesThis study aimed to determine whether different bahiagrass cultivars interactively influence soil bacterial and fungal communities.MethodsSix bahiagrass cultivars (‘Argentine’, ‘Pensacola’, ‘Sand Mountain’, ‘Tifton 9’, ‘TifQuik’, and ‘UF-Riata’) were grown in a randomized complete block design with four replicate plots of 4.6 × 1.8 m per cultivar in a Rhodic Kandiudults soil in Northwest Florida, USA. Three soil subsamples per replicate plot were randomly collected. Soil DNA was extracted and bacterial 16S ribosomal RNA and fungal ribosomal internal transcribed spacer 1 genes were amplified and sequenced with one Illumina Miseq Nano.ResultsThe soil bacterial and fungal community across bahiagrass cultivars showed similarities with communities recovered from other grassland ecosystems. Few differences in community composition and diversity of soil bacteria among cultivars were detected; none were detected for soil fungi. The relative abundance of sequences assigned to nitrite-oxidizingNitrospirawas greater under ‘Sand Mountain’ than ‘UF-Riata’. Indicator species analysis revealed that several bacterial and fungal indicators associated with either a single cultivar or a combination of cultivars are likely to be plant pathogens or antagonists.ConclusionsOur results suggest a low impact of plant cultivar choice on the soil bacterial community composition, whereas the soil fungal community was unaffected. Shifts in the relative abundance ofNitrospiramembers in response to cultivar choice may have implications for soil N dynamics. The cultivars associated with presumptive plant pathogens or antagonists indicates that the ability of bahiagrass to control plant pathogens may be cultivar-dependent, however, physiological studies on plant-microbe interactions are required to confirm this presumption. We therefore suggest that future studies should explore the potential of different bahiagrass cultivars on plant pathogen control, particularly in sod-based crop rotation.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 11 ◽  
Author(s):  
Chaoqun Wang ◽  
Lin Xue ◽  
Yuhong Dong ◽  
Lingyu Hou ◽  
Yihui Wei ◽  
...  

Soil enzymes and microbial communities are key factors in forest soil ecosystem functions and are affected by stand age. In this study, we studied soil enzyme activities, composition and diversity of bacterial and fungal communities and relevant physicochemical properties at 0–10 cm depth (D1), 10–20 cm depth (D2) and 20–30 cm depth (D3) soil layers in 3-(3a), 6-(6a), 12-(12a), 18-(18a), 25-(25a), 32-(32a) and 49-year-old (49a) Chinese fir plantations to further reveal the effects of stand age on soil biotic properties. Spectrophotometry and high-throughput sequencing was used to assess the soil enzyme activity and microbial community composition and diversity of Chinese fir plantation of different stand ages, respectively. We found that soil catalase activity increased as the stand age of Chinese fir plantations increased, whereas the activities of urease, sucrase and β-glucosidase in 12a, 18a and 25a were lower than those in 6a, 32a and 49a. Shannon and Chao1 indices of bacterial and fungal communities first decreased gradually from 6a to 18a or 25a and then increased gradually from 25a to 49a. Interestingly, the sucrase and β-glucosidase activities and the Shannon and Chao1 indices in 3a were all lower than 6a. We found that the relative abundance of dominant microbial phyla differed among stand ages and soil depths. The proportion of Acidobacteria first increased and then decreased from low forest age to high forest age, and its relative abundance in 12a, 18a and 25a were higher than 3a, 32a and 49a, but the proportion of Proteobacteria was opposite. The proportion of Ascomycota first decreased and then increased from 6a to 49a, and its relative abundance in 12a, 18a and 25a was lower than 3a, 6a, 32a and 49a. Our results indicate that soil enzyme activities and the richness and diversity of the microbial community are limited in the middle stand age (from 12a to 25a), which is important for developing forest management strategies to mitigate the impacts of degradation of soil biological activities.


2022 ◽  
Author(s):  
Wen-Juan Wang ◽  
Jing Wen ◽  
Pastor L. Malabrigo ◽  
Ming-Xun Ren

Abstract Background Agroforestry system is one of promising directions for developing sustainable agriculture because the intercropping of crops and trees may facilitate resource cycling and avoid soil degradation. Bombax ceiba (Malvaceae), a tall tree with red flowers blooming in Spring, is traditionally planted in rice paddies in tropical Asia, while the roles of B. ceiba in the agroecosystem remain unexplored.Methods In this paper, we investigated and assessed spatiotemporal variations of soil nutrient contents and soil bacterial and fungal communities along the distance gradients to B. ceiba during three reproductive stages of rice, i.e. booting, heading, mature, in a typical Bombax-dominated rice paddy on Hainan Island, South China.Results B. ceiba in rice paddy could improve the soil nutrient conditions, particularly available K and soil organic carbons. The relative abundance of Chloroflexi and Ascomycota increased while Actinobacteria decreased along the distance gradient to B. ceiba. In addition, the relative abundance of Firmicutes was highest at harvesting stage of rice, while Acidobacteria was richer in the early reproductive stage of rice. Soil potassium content was the principal driver in shaping soil bacterial diversity and composition, while fungal community was mainly affected by soil nitrogen.Conclusions Our results provide evidences for positive influences of B. ceiba on biotic and abiotic traits of rice paddy soils and thus lend supports to the ecological basis of this tropical Asian endemic traditional Agroforestry system, which could increase resource cycling and paddy stability and have the potential to reduce carbon emission.


Ecosystems ◽  
2021 ◽  
Author(s):  
Fiona M. Seaton ◽  
Sabine Reinsch ◽  
Tim Goodall ◽  
Nicola White ◽  
Davey L. Jones ◽  
...  

AbstractThe response of soil microbial communities to a changing climate will impact global biogeochemical cycles, potentially leading to positive and negative feedbacks. However, our understanding of how soil microbial communities respond to climate change and the implications of these changes for future soil function is limited. Here, we assess the response of soil bacterial and fungal communities to long-term experimental climate change in a heathland organo-mineral soil. We analysed microbial communities using Illumina sequencing of the 16S rRNA gene and ITS2 region at two depths, from plots undergoing 4 and 18 years of in situ summer drought or warming. We also assessed the colonisation of Calluna vulgaris roots by ericoid and dark septate endophytic (DSE) fungi using microscopy after 16 years of climate treatment. We found significant changes in both the bacterial and fungal communities in response to drought and warming, likely mediated by changes in soil pH and electrical conductivity. Changes in the microbial communities were more pronounced after a longer period of climate manipulation. Additionally, the subsoil communities of the long-term warmed plots became similar to the topsoil. Ericoid mycorrhizal colonisation decreased with depth while DSEs increased; however, these trends with depth were removed by warming. We largely ascribe the observed changes in microbial communities to shifts in plant cover and subsequent feedback on soil physicochemical properties, especially pH. Our results demonstrate the importance of considering changes in soil microbial responses to climate change across different soil depths and after extended periods of time.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 638
Author(s):  
Hao Li ◽  
Longteng Ma ◽  
Zhiqing Li ◽  
Jie Yin ◽  
Bie Tan ◽  
...  

The current study aimed to investigate the evolution of gut microbiota and its influencing factors for NXP in youth. The results showed that Shannon index increased from d 21 to d 28 whereas the ACE index increased from d 21 until d 60. Firmicutes, mainly Lactobacillus dominated on d 21. The Bacteroides and Spirochetes showed highest relative abundance on d 28. Fiber-degrading bacteria, mainly Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Muribaculaceae, and Oscillospiraceae_UCG−002, dominated the microbial communities at d 28 and d 35. The microbial communities at d 60 and d 75 contained more Clostridium_sensu_stricto_1, Terrisporobacter and Oscillospiraceae_UCG−005 than other ages, which had significantly positive correlations with acetate and total SCFAs concentration. In conclusion, the evolution of gut microbiota was mainly adapted to the change of dietary factors during NXP growth. The response of fiber-degrading bacteria at different stages may help NXP better adapt to plant-derived feeds.


Sign in / Sign up

Export Citation Format

Share Document