scholarly journals Soil aggregate size influences the impact of inorganic nitrogen deposition on soil nitrification in an alpine meadow of the Qinghai–Tibet Plateau

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8230 ◽  
Author(s):  
Jingjing Li ◽  
Chao Yang ◽  
Xiaoli Liu ◽  
Hanzhong Ji ◽  
Xinqing Shao

Background Ammonium (NH4+) and nitrate (NO3−) are two inorganic forms of nitrogen (N) that are deposited from the atmosphere into soil systems. As the substrate and product of soil nitrification, these two forms of inorganic nitrogen will affect or be affected by the soil net nitrification rate (Nr). Our knowledge regarding soil nitrification is mainly derived from studies with bulk soil. However, soil is composed of different aggregate fractions, which may have an important impact on Nr. Methods In 2017, we collected soil samples from an alpine meadow of the Qinghai–Tibet Plateau and separated them into four soil aggregates (2–4, 1–2, 0.25–1, and <0.25 mm) using the dry sieving method. The four soil aggregate sizes amended with the 2 N deposition forms (NH4+-N and NO3−-N) were then incubated at 25 °C for 28 days, and the soil aggregates for each treatment were collected on day 0, 7, 14, 21, and 28 to determine the NO3−-N concentration. The soil Nr and contribution of soil aggregates to the nitrification rate in the bulk soil were calculated. Results There were differences in the physicochemical properties of the soil aggregates. The addition of N and aggregate size had strong effects on soil Nr, which were significantly increased under high levels of NH4+ addition across all soil aggregates. The Nr during the 4 week incubation period differed among aggregate sizes. Nr in the 2–4 mm aggregates was higher than in the other aggregates, which was correlated with the maximum values of the soil porosity observed in the 2–4 mm aggregates. Furthermore, almost half of the soil was composed of aggregates of <0.25 mm, indicating that the <0.25 mm aggregates made a higher contribution to the nitrification rate in the bulk soil than the other aggregates, even though these aggregates had a lower nitrification ability. Overall, our study revealed that the soil nitrification rate was influenced by both the N addition and soil aggregates, and that the 2–4 mm aggregates had a dominant effect on the response of soil N transformation processes to future nitrogen deposition in the alpine meadow.


2021 ◽  
Author(s):  
Wenjing Chen ◽  
Huakun Zhou ◽  
Leilei Qiao ◽  
Yuanze Li ◽  
Yang Wu ◽  
...  

Abstract Background and aims Global warming has increasingly serious impacts on the structure and function of the Tibetan Plateau ecosystem. However, the mechanism by which warming affects the biogeochemical processes and consequently the microbial nutrient limitation in soil aggregates is not clear. Methods In the present study, we used open-top chamber experiments to simulate warming in an alpine meadow and an alpine shrubland on the Qinghai-Tibet Plateau to understand how warming affects nutrient utilization and microorganism-limiting mechanisms in soil aggregates. Results The results showed that long-term warming treatment had contrasting effects on soil organic carbon (SOC) content of the alpine meadow and that of the shrubland. This difference was more pronounced with the increase in soil aggregate size, and the SOC content in microaggregates (MIGA) was significantly higher than that in large macroaggregates (LMGA). Soil enzyme activity increased with the decrease in aggregate size and was not significantly affected by warming treatment. Enzyme stoichiometry demonstrated that microbial P limitation is widespread on the Tibetan Plateau, and the long-term warming treatment exacerbated it, which has significant differences in shrubland. At the same time, the long-term warming treatment had no significant effect on C limitation in the alpine shrubland and the alpine meadow, but soil aggregate size affected the C limitation patterns of microorganisms and showed strong limitations in MIGA. Conclusions The microbial P limitation in shrubland is more sensitive to warming than that of grassland. Soil aggregates mediate the acquisition of carbon by microorganisms, and the carbon limitation in MIGA is the greatest. By providing a new perspective on this topic, our study increased our understanding of the effects of warming on microbial nutrient utilization and restriction patterns in soil aggregates.



2021 ◽  
Author(s):  
Wenjing Chen ◽  
Huakun Zhou ◽  
Leilei Qiao ◽  
Yuanze Li ◽  
Yang Wu ◽  
...  

Abstract Background and aims Global warming has increasingly serious impacts on the structure and function of the Tibetan Plateau ecosystem. However, the mechanism by which warming affects the biogeochemical processes, and consequently the microbial nutrient limitation in soil aggregates, is not clear. Methods In the present study, we used open-top chamber experiments to simulate warming in an alpine meadow and an alpine shrubland on the Qinghai-Tibet Plateau, and we measured the C, N, and P-acquiring enzyme (β-1, 4-glucosidase, BG; leucine aminopeptidase, LAP; β-N-acetylglucosaminidase, NAG; alkali phosphatase, AP) activities and their stoichiometry to understand how warming affects microorganism-limiting mechanisms in soil aggregates. Results The results showed that long-term warming treatment significantly decreased soil organic carbon (SOC) and total nitrogen (TN) concentrations of large macroaggregates (LMGA) and small macroaggregates (SMGA) in alpine meadows, but significantly increased SOC concentration of LMGA in alpine shrubland. The SOC and TN concentrations of alpine meadows increased with the decrease of soil aggregate size and the concentrations in microaggregate (MIGA) were significantly higher than those LMGA. Soil enzyme activity increased with the decrease in aggregate size and was not significantly affected by warming treatment. Enzyme stoichiometry results demonstrated that soil microbes in alpine meadows and shrubland were limited by nutrient P relative to nitrogen; moreover, the long-term warming treatment aggravated the P limitation of soil microorganisms in the shrubland, and it had significant differences in LMGA and MIGA. At the same time, the long-term warming treatment had no significant effect on C limitation in the alpine shrubland and alpine meadows, but soil aggregate size affected the C limitation patterns of microorganisms and showed the greatest limitations in MIGA. Conclusions The microbial P limitation in shrubland is more sensitive to warming than that in meadow. Soil aggregates mediate the acquisition of C by microorganisms, and the C limitation in MIGA is the greatest. By providing a new perspective on this topic, our study increased our understanding of the effects of warming on microbial nutrient utilization and restriction patterns in soil aggregates.



2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.







2017 ◽  
Vol 28 (5) ◽  
pp. 1538-1548 ◽  
Author(s):  
Changting Wang ◽  
Genxu Wang ◽  
Pengfei Wu ◽  
Rashid Rafique ◽  
Hongbiao Zi ◽  
...  




2016 ◽  
Vol 36 (16) ◽  
Author(s):  
刘晓琴 LIU Xiaoqin ◽  
张翔 ZHANG Xiang ◽  
张立锋 ZHANG Lifeng ◽  
李英年 LI Yingnian ◽  
赵亮 ZHAO Liang ◽  
...  


2010 ◽  
Vol 27 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Yuanshou Li ◽  
Renhe Zhang ◽  
Xiaohong Jia ◽  
Genxu Wang ◽  
Lin Zhao ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document