scholarly journals New mammalian and avian records from the late Eocene La Meseta and Submeseta formations of Seymour Island, Antarctica

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8268
Author(s):  
Sarah N. Davis ◽  
Christopher R. Torres ◽  
Grace M. Musser ◽  
James V. Proffitt ◽  
Nicholas M.A. Crouch ◽  
...  

The middle–late Eocene of Antarctica was characterized by dramatic change as the continent became isolated from the other southern landmasses and the Antarctic Circumpolar Current formed. These events were crucial to the formation of the permanent Antarctic ice cap, affecting both regional and global climate change. Our best insight into how life in the high latitudes responded to this climatic shift is provided by the fossil record from Seymour Island, near the eastern coast of the Antarctic Peninsula. While extensive collections have been made from the La Meseta and Submeseta formations of this island, few avian taxa other than penguins have been described and mammalian postcranial remains have been scarce. Here, we report new fossils from Seymour Island collected by the Antarctic Peninsula Paleontology Project. These include a mammalian metapodial referred to Xenarthra and avian material including a partial tarsometatarsus referred to Gruiformes (cranes, rails, and allies). Penguin fossils (Sphenisciformes) continue to be most abundant in new collections from these deposits. We report several penguin remains including a large spear-like mandible preserving the symphysis, a nearly complete tarsometatarsus with similarities to the large penguin clade Palaeeudyptes but possibly representing a new species, and two small partial tarsometatarsi belonging to the genus Delphinornis. These findings expand our view of Eocene vertebrate faunas on Antarctica. Specifically, the new remains referred to Gruiformes and Xenarthra provide support for previously proposed, but contentious, earliest occurrence records of these clades on the continent.

1997 ◽  
Vol 71 (2) ◽  
pp. 348-350 ◽  
Author(s):  
S. F. Vizcaino ◽  
M. Bond ◽  
M. A. Reguero ◽  
R. Pascual

The record of fossil land mammals from Antarctica has been restricted previously to the middle levels of the Eocene-?early Oligocene La Meseta Formation in Seymour Island, Antarctic Peninsula. This mostly shallow-marine sequence was divided informally into seven subunits (Tertiary Eocene La Meseta or TELM 1 to 7) by Sadler (1988). Land mammals, representing South American lineages of marsupials, edentates, and ungulates were recovered from TELM 3, 4, and 5 (Marenssi et al., 1994; Vizcaíno et al., 1994). The purpose of the present note is to report the discovery of a well-preserved ungulate tooth from the uppermost level of the La Meseta Formation (TELM 7) and to discuss its paleoenvironmental implications.


1982 ◽  
Vol 3 ◽  
pp. 347-347
Author(s):  
A Aristarain ◽  
M Briat ◽  
R Delmas ◽  
M Pourchet ◽  
J Jouzel

James Ross Island (mean diameter 50 km) is located near the north-eastern coast of the Antarctic Peninsula. An ice cap, covering nearly the entire island, rises to a height of ~1 600 m. Three summer expeditions with glaciological purposes were recently achieved on this ice cap by the Instituto Antártico Argentino, two of them with the scientific participation of the Laboratoire de Glaciologie et Geophysique de I'Environnement, Grenoble.We present results of climatic and chemical investigations performed on recent snow layers dating back about 25 a. The studied samples were collected at different sites on the upper part of the ice dome. Detailed measurements (deuterium, oxygen 18 and total β activity) were performed on more than 1000 selected samples. The relationship between stable isotope and mean annual temperature fits very well with the one previously obtained in the Antarctic Peninsula.An ice core 22 m deep drilled on Dome Dalinqer (elevation 1600 m, mean annual temperature -15˚C) showed well-preserved seasonal variations in deuterium all along the profile, thus providing a yearly dating of the samples which was confirmed by β activity reference levels. The mean annual accumulation thus deduced is 500 kg m−2 between 1955 and 1979, with values significantly lower (30%) in the 1955–65 decade than in 1965–79. The same trend earlier observed in east and central parts of Antarctica thus appears to have a very large geographical extent.This well-dated core allows us to undertake a year-to-year comparison between isotopic and climatological data over the 1953–78 period. The mean annual values of the deuterium content are well correlated with the average surface temperature taken over the whole Antarctic Peninsula (δD = (3.4±2.0)T - (98±32))These data and the experimentally derived δD/δ180 relationship obtained on James Ross Island allow us to deduce a δ180 temperature gradient of 0.44‰°C−1. This low value is discussed in view of a new isotopic model taking into account the partial removal of precipitation and the possible variation of the oceanic source. James Ross Island thus appears suitable as a potential site for reconstructing past climatic changes of the Antarctic Peninsula beyond existing data.Contamination-free techniques were used for sampling and analysing the snow samples. Na, K, Ca, and Al (by atomic absorption), H+ (by titrimetric measurements), SO42- and NO3− (by ion chromatography), and conductivity were determined on more than 100 samples collected in a 4.3 m deep pit. Some of these parameters were also measured on ice-core samples or additional pit samples.Snow impurities are contributed by different aerosol sources: sea salt, continental particles and the small-size particles produced by the conversion of various atmospheric gases. The relative importance of these sources has been estimated.James Ross snow was found always to be slightly acid (1 to 10 μEquiv. l−1 of H+, mainly as sulphuric acid). Nitrate concentrations are much smaller (0.4 μEquiv. l−1). Strong seasonal variations are observed for H2SO4 deposition, probably in relation to its formation in the Antarctic atmosphere.Sea-salt deposition exhibits also seasonal variations which can be correlated with storm frequency in the Weddell Sea area. The continental aerosol contribution is weak as indicated by very low Al values.The influence of Deception Island volcanism on the regional aerosol chemistry is examined. A marked increase of snow acidity was detected after the 1967 eruption of this volcano, but no ash layers were observed.The strong variations of the conductivity of melt water are interpreted: it is shown that this parameter is not representative of the extent of sea ice


1982 ◽  
Vol 3 ◽  
pp. 347
Author(s):  
A Aristarain ◽  
M Briat ◽  
R Delmas ◽  
M Pourchet ◽  
J Jouzel

James Ross Island (mean diameter 50 km) is located near the north-eastern coast of the Antarctic Peninsula. An ice cap, covering nearly the entire island, rises to a height of ~1 600 m. Three summer expeditions with glaciological purposes were recently achieved on this ice cap by the Instituto Antártico Argentino, two of them with the scientific participation of the Laboratoire de Glaciologie et Geophysique de I'Environnement, Grenoble. We present results of climatic and chemical investigations performed on recent snow layers dating back about 25 a. The studied samples were collected at different sites on the upper part of the ice dome. Detailed measurements (deuterium, oxygen 18 and total β activity) were performed on more than 1000 selected samples. The relationship between stable isotope and mean annual temperature fits very well with the one previously obtained in the Antarctic Peninsula. An ice core 22 m deep drilled on Dome Dalinqer (elevation 1600 m, mean annual temperature -15˚C) showed well-preserved seasonal variations in deuterium all along the profile, thus providing a yearly dating of the samples which was confirmed by β activity reference levels. The mean annual accumulation thus deduced is 500 kg m−2 between 1955 and 1979, with values significantly lower (30%) in the 1955–65 decade than in 1965–79. The same trend earlier observed in east and central parts of Antarctica thus appears to have a very large geographical extent. This well-dated core allows us to undertake a year-to-year comparison between isotopic and climatological data over the 1953–78 period. The mean annual values of the deuterium content are well correlated with the average surface temperature taken over the whole Antarctic Peninsula (δD = (3.4±2.0)T - (98±32)) These data and the experimentally derived δD/δ180 relationship obtained on James Ross Island allow us to deduce a δ180 temperature gradient of 0.44‰°C−1. This low value is discussed in view of a new isotopic model taking into account the partial removal of precipitation and the possible variation of the oceanic source. James Ross Island thus appears suitable as a potential site for reconstructing past climatic changes of the Antarctic Peninsula beyond existing data. Contamination-free techniques were used for sampling and analysing the snow samples. Na, K, Ca, and Al (by atomic absorption), H+ (by titrimetric measurements), SO4 2- and NO3 − (by ion chromatography), and conductivity were determined on more than 100 samples collected in a 4.3 m deep pit. Some of these parameters were also measured on ice-core samples or additional pit samples. Snow impurities are contributed by different aerosol sources: sea salt, continental particles and the small-size particles produced by the conversion of various atmospheric gases. The relative importance of these sources has been estimated. James Ross snow was found always to be slightly acid (1 to 10 μEquiv. l−1 of H+, mainly as sulphuric acid). Nitrate concentrations are much smaller (0.4 μEquiv. l−1 ). Strong seasonal variations are observed for H2SO4 deposition, probably in relation to its formation in the Antarctic atmosphere. Sea-salt deposition exhibits also seasonal variations which can be correlated with storm frequency in the Weddell Sea area. The continental aerosol contribution is weak as indicated by very low Al values. The influence of Deception Island volcanism on the regional aerosol chemistry is examined. A marked increase of snow acidity was detected after the 1967 eruption of this volcano, but no ash layers were observed. The strong variations of the conductivity of melt water are interpreted: it is shown that this parameter is not representative of the extent of sea ice


1991 ◽  
Vol 3 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Joseph T. Eastman ◽  
Lance Grande

On the basis of a skull from the late Eocene La Meseta Formation on Seymour Island, Antarctic Peninsula, a gadiform fish is reported from the Antarctic region for the first time. This specimen, the most completely preserved fossil teleost cranium yet described from Antarctica, provides convincing evidence for the presence of Gadiformes in a far southerly location under temperate climatic conditions 40 m.y. ago. The exoccipital condyles, supraoccipital and lambdoidal crests, and post-temporal and supratemporal fossae are well preserved, as are the roofing bones on the posterior half of the skull. Comparative osteological study indicates that these features are very similar in appearance to those of merlucciids (hakes) and gadids (cods).


1992 ◽  
Vol 4 (1) ◽  
pp. 107-108 ◽  
Author(s):  
J.J. Hooker

Recently, fossil land mammals have been recorded in the James Ross Island area, east of the Antarctic Peninsula, from the marine middle-late Eocene strata of Seymour Island. These include two endemic species of polydolopid marsupial: Antarctodolops dailyi Woodburne & Zinsmeister 1984, and Eurydolops seymourensis Case, Woodburne & Chaney 1988, and three partly determinate placentals identified as a tardigrade edentate, a sparnotheriodontid litoptern and a trigonostylopid astrapothere (Bond et al. 1989). The marsupials are represented by fragmentary jaw and complete dental material, the litoptern and astrapothere only by tooth fragments. All are recorded from Unit TELM 5 of the La Meseta Formation (Sadler 1988), the two ungulates at a lower level than the rest. The subject of the present note is a second tooth fragment from Seymour Island identified as an astrapothere. It is worth recording because such mammal remains are rare and it is from TELM 4, the unit below that yielding the other land mammals.


2008 ◽  
Vol 20 (6) ◽  
pp. 589-590 ◽  
Author(s):  
Piotr Jadwiszczak

Penguins (Aves: Sphenisciformes) are interesting to both neontologists and palaeontologists (e.g. Davis & Renner 2003). The fossil record of these extremely specialized inhabitants of the Southern Hemisphere extends back to the Palaeocene epoch (Slack et al. 2006). Extinct penguins are known from localities within the range of their modern-day relatives (Fordyce & Jones 1990), and the oldest diverse assemblage comes from the Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula, the only such locality south of the Antarctic Convergence (Myrcha et al. 2002, Jadwiszczak 2006a). Several collections amounting to over three thousand bones (mainly isolated skeletal elements) have been acquired since 1901 from that formation, and 15 penguin species have been erected so far (Jadwiszczak 2006a, table 1, Tambussi et al. 2006). Only ten of them (grouped into six genera) appear to be taxonomically distinct, and their type specimens are tarsometatarsi (Simpson 1971, Myrcha et al. 2002, Jadwiszczak 2006a, 2006b, p. 296). Individuals from six species belonging to four genera most probably were not larger than those of Aptenodytes forsteri G.R. Gray, 1844, the heaviest and tallest extant penguin (Jadwiszczak 2001, table 3). Interestingly, representatives of all ten species may have co-existed in the West Antarctic during the Late Eocene epoch, just prior to the final break-up of Gondwana (Jadwiszczak 2006a). Presented here is an intriguing partial tarsometatarsus of a small-sized penguin from the Late Eocene of Antarctic Peninsula, probably representing a new genus and species.


2020 ◽  
Author(s):  
Sarah Feron ◽  
Raul Cordero

<p>Surface Melt (SM) is one of the factors that contribute to sea level rise; surface meltwater draining through the ice and beneath Antarctic glaciers may cause acceleration in their flow towards the sea. Changes in the frequency of relatively warm days (including heatwaves) can substantially alter the SM variability, thus leading to extreme melting events. By using simulations from 13 Global Climate Models (GCMs) and according to a moderate representative concentration pathways (RCP4.5), here we show that the frequency of extreme SM events (SM90; according to the 90th percentile over the reference period 1961-1990) may significantly increase in coastal areas of West Antarctica; in particular in the Antarctic Peninsula. By the end of the century SM90 estimates are expected to increase from currently 0.10 kg/m2/day to about 0.45 kg/m2/day in the Antarctic Peninsula. Increments in SM90 estimates are not just driven by changes in the average SM, but also by the variability in SM. The latter is expected to increase by around 50% in the Antarctic Peninsula.</p>


1997 ◽  
Vol 9 (4) ◽  
pp. 443-444 ◽  
Author(s):  
R.A. del Valle ◽  
J.M. Lirio ◽  
J.C. Lusky ◽  
J.R. Morelli ◽  
H.J. Nuñez

Jason Peninsula (66°10'S, 61°00'W) is a prominent feature extending some 80 km into the Larsen Ice Shelf from the eastern coast of the Antarctic Peninsula, and consists of widely spaced rock exposures and several ice-domes with elevations up to some 600 m (Fig. 1). The feature was first seen from seaward on 1 December 1893 by Captain C.A. Larsen, who named one of the high summits “Mount Jason” after his ship. Leading the 1902–1904 Swedish Antarctic Expedition, Dr Otto Nordenskjöld observed the area from Borchgrevink Nunatak (66°03'S; 62°30'W) and reported that the summits seen by Larsen were separated from the Antarctic Peninsula. The name “Jason Island” was subsequently adopted for this feature, but in the 1950s researchers belonging to the currently named British Antarctic Survey (BAS) determined Larsen's discovery to be a large peninsula, underlain mainly by calc-alkaline volcanic rocks.


2021 ◽  
Author(s):  
Mariem Saavedra-Pellitero ◽  
Anieke Brombacher ◽  
Oliver Esper ◽  
Alexandre de Souza ◽  
Elisa Malinverno ◽  
...  

<p>The Antarctic Circumpolar Current (ACC) is a major driver of global climate. It connects all three ocean basins, integrating global climate variability, and its vertical water mass structure plays a key role in oceanic carbon storage. The Atlantic and Indian sectors of the ACC are well studied, but the Pacific sector lacks deep-sea drilling records. Therefore, past water mass transport through the Drake Passage and its effect on Atlantic Meridional Overturning Circulation are not well understood. To fill this gap, IODP Expedition 383 recovered sediments from three sites in the central South Pacific and three sites from the southern Chilean Margin.</p><p>Here we present the preliminary biostratigraphy developed during the expedition. The sediments contained abundant nannofossils, foraminifera, radiolarians, diatoms and silicoflagellates which produced age models that were in excellent agreement with the shipboard magnetostratigraphy. Two sites contain high-resolution Pleistocene records, one site goes back to the Pliocene, and two others reach back to the late Miocene. Post-cruise research will further refine these age models through high-resolution bio-, magneto- and oxygen isotope stratigraphies that are currently being generated.</p>


Sign in / Sign up

Export Citation Format

Share Document