scholarly journals Shifts in soil nutrient concentrations and C:N:P stoichiometry during long-term natural vegetation restoration

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8382
Author(s):  
Rentian Ma ◽  
Feinan Hu ◽  
Jingfang Liu ◽  
Chunli Wang ◽  
Zilong Wang ◽  
...  

Background Ecological stoichiometry (C:N:P ratios) in soil is an important indicator of the elemental balance in ecological interactions and processes. Long-term natural vegetation plays an important role in the accumulation and distribution of soil stoichiometry. However, information about the effects of long-term secondary forest succession on soil stoichiometry along a deep soil profile is still limited. Methods We selected Ziwuling secondary succession forest developed from farmland as the study area, investigated the concentrations and stoichiometry of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) at a depth of 0–100 cm along a 90-year succession chronosequence, including farmland (control), grassland, shrub, early forest, and climax forest. Results SOC and TN concentrations significantly increased with increasing restoration age, whereas soil P concentration remained relatively stable across various successional stages. SOC and TN concentrations decreased with an increase in soil depth, exhibiting distinct soil nutrient “surface-aggregation” (high nutrients concentration in the top soil layer). The soil C:P and N:P ratios increased with an increase in restoration age, whereas the variation of the C:N ratio was small and relatively stable across vegetation succession. The nutrient limitation changed along with vegetation succession, transitioning from limited N in the earlier successional stages to limited P in the later successional stages. Conclusion Our results suggest that more nitrogen input should be applied to earlier succession stages, and more phosphorus input should be utilized in later succession stages in order to address limited availability of these elements. In general, natural vegetation restoration was an ecologically beneficial practice for the recovery of degraded soils in this area. The findings of this study strengthen our understanding of the changes of soil nutrient concentration and nutrient limitation after vegetation restoration, and provide a simple guideline for future vegetation restoration and reconstruction efforts on the Loess Plateau.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10349
Author(s):  
Zhenguo Zhang ◽  
Mingming Wang ◽  
Jikai Liu ◽  
Xinwei Li

Identification of typical vegetation succession types and their important influencing factors is an important prerequisite to implement differential vegetation and soil management after land abandonment on the Loess Plateau, China. However, there is no reported study specifically on the identification of vegetation types and their important factors as well as the thresholds of the important factors for classification of the vegetation types, based on the medium- to long-term succession of natural vegetation after cropland abandonment. We collected vegetation and soil data on the natural vegetation with the longest 60-year-old forest communities that developed after cropland abandonment and analyzed the data using two-way indicator species analysis, detrended correspondence analysis, direct canonical correspondence analysis and classification tree model. The vegetation communities were classified into five distinct vegetation types, including Artemisia scoparia, Lespedeza davurica and Stipa bungeana, Artemisia giraldii pamp, Sophora viciifolia, Quercus liaotungensis and Biota orientalis. The years after cropland abandonment and soil C/N were further identified as important factors determining the types of vegetation. Likewise, it was observed that most of the investigated soil nutrient variables and soil texture-related variables improved with the vegetation succession while soil water in the surface layers showed a decreasing trend. These findings may provide an ecological basis for site-specific management of vegetation types after cropland abandonment in the medium-long term on the Loess Plateau. Our results encourage further exploration of vegetation succession and their important factors based on longer periods of vegetation succession after cropland abandonment under more soil and climatic conditions on the mountainous areas as the Loess Plateau.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Jiayue Jiao

 Economic vitality is an important indicator of regional competitiveness. The demand for talents and the vitality of enterprises in different regions are obvious to all and have practical significance. Therefore, it is necessary to establish a survey data model and conduct in-depth study on improving regional economic vitality from the perspective of policy.Based on a variety of forecasting methods, this paper analyzes the short-term and long-term impact of economic policies in Northeast China, and finally puts forward the factors that affect the economic vitality of northeast policies. Finally, the paper puts forward the feasibility and targeted suggestions of strengthening regional economic vitality, obtaining long-term development and building a more competitive city in the new era. 


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105293
Author(s):  
Yang Wu ◽  
WenJing Chen ◽  
Wulan Entemake ◽  
Jie Wang ◽  
HongFei Liu ◽  
...  

2016 ◽  
Vol 17 (9) ◽  
pp. 2346-2356 ◽  
Author(s):  
Song-Ze Wan ◽  
Han-Jiao Gu ◽  
Qing-Pei Yang ◽  
Xiao-Fei Hu ◽  
Xiang-Min Fang ◽  
...  

2006 ◽  
Vol 122 (4) ◽  
pp. 635-642 ◽  
Author(s):  
S. WOODIN ◽  
B. GRAHAM ◽  
A. KILLICK ◽  
U. SKIBA ◽  
M. CRESSER

Oikos ◽  
2005 ◽  
Vol 111 (3) ◽  
pp. 445-458 ◽  
Author(s):  
Anna Shevtsova ◽  
Marie-Charlotte Nilsson ◽  
Christiane Gallet ◽  
Olle Zackrisson ◽  
Anders Jäderlund

Sign in / Sign up

Export Citation Format

Share Document