scholarly journals Identification of hub genes and small molecule therapeutic drugs related to breast cancer with comprehensive bioinformatics analysis

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9946
Author(s):  
Mingqian Hao ◽  
Wencong Liu ◽  
Chuanbo Ding ◽  
Xiaojuan Peng ◽  
Yue Zhang ◽  
...  

Breast cancer is one of the most common malignant tumors among women worldwide and has a high morbidity and mortality. This research aimed to identify hub genes and small molecule drugs for breast cancer by integrated bioinformatics analysis. After downloading multiple gene expression datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, 283 overlapping differentially expressed genes (DEGs) significantly enriched in different cancer-related functions and pathways were obtained using LIMMA, VennDiagram and ClusterProfiler packages of R. We then analyzed the topology of protein–protein interaction (PPI) network with overlapping DEGs and further obtained six hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, and CCNA2) from the network via STRING and Cytoscape. Subsequently, we conducted genes expression verification, genetic alterations evaluation, immune infiltration prediction, clinicopathological parameters analysis, identification of transcriptional and post-transcriptional regulatory molecules, and survival analysis for these hub genes. Meanwhile, 29 possible drug candidates (e.g., Cladribine, Gallium nitrate, Alvocidib, 1β-hydroxyalantolactone, Berberine hydrochloride, Nitidine chloride) were identified from the DGIdb database and the GSE85871 dataset. In addition, some transcription factors and miRNAs (e.g., E2F1, PTTG1, TP53, ZBTB16, hsa-miR-130a-3p, hsa-miR-204-5p) targeting hub genes were identified as key regulators in the progression of breast cancer. In conclusion, our study identified six hub genes and 29 potential drug candidates for breast cancer. These findings may advance understanding regarding the diagnosis, prognosis and treatment of breast cancer.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Da-Qiu Chen ◽  
Xiang-Sheng Kong ◽  
Xue-Bin Shen ◽  
Mao-Zhi Huang ◽  
Jian-Ping Zheng ◽  
...  

Background. Acute myocardial infarction (AMI) is a common disease with high morbidity and mortality around the world. The aim of this research was to determine the differentially expressed genes (DEGs), which may serve as potential therapeutic targets or new biomarkers in AMI. Methods. From the Gene Expression Omnibus (GEO) database, three gene expression profiles (GSE775, GSE19322, and GSE97494) were downloaded. To identify the DEGs, integrated bioinformatics analysis and robust rank aggregation (RRA) method were applied. These DEGs were performed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses by using Clusterprofiler package. In order to explore the correlation between these DEGs, the interaction network of protein-protein internet (PPI) was constructed using the STRING database. Utilizing the MCODE plug-in of Cytoscape, the module analysis was performed. Utilizing the cytoHubba plug-in, the hub genes were screened out. Results. 57 DEGs in total were identified, including 2 down- and 55 upregulated genes. These DEGs were mainly enriched in cytokine-cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and so on. The module analysis filtered out 18 key genes, including Cxcl5, Arg1, Cxcl1, Spp1, Selp, Ptx3, Tnfaip6, Mmp8, Serpine1, Ptgs2, Il6, Il1r2, Il1b, Ccl3, Ccr1, Hmox1, Cxcl2, and Ccl2. Ccr1 was the most fundamental gene in PPI network. 4 hub genes in total were identified, including Cxcl1, Cxcl2, Cxcl5, and Mmp8. Conclusion. This study may provide credible molecular biomarkers in terms of screening, diagnosis, and prognosis for AMI. Meanwhile, it also serves as a basis for exploring new therapeutic target for AMI.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bojun Xu ◽  
Lei Wang ◽  
Huakui Zhan ◽  
Liangbin Zhao ◽  
Yuehan Wang ◽  
...  

Objectives. Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) throughout the world, and the identification of novel biomarkers via bioinformatics analysis could provide research foundation for future experimental verification and large-group cohort in DN models and patients. Methods. GSE30528, GSE47183, and GSE104948 were downloaded from Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs). The difference of gene expression between normal renal tissues and DN renal tissues was firstly screened by GEO2R. Then, the protein-protein interactions (PPIs) of DEGs were performed by STRING database, the result was integrated and visualized via applying Cytoscape software, and the hub genes in this PPI network were selected by MCODE and topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to determine the molecular mechanisms of DEGs involved in the progression of DN. Finally, the Nephroseq v5 online platform was used to explore the correlation between hub genes and clinical features of DN. Results. There were 64 DEGs, and 32 hub genes were identified, enriched pathways of hub genes involved in several functions and expression pathways, such as complement binding, extracellular matrix structural constituent, complement cascade related pathways, and ECM proteoglycans. The correlation analysis and subgroup analysis of 7 complement cascade-related hub genes and the clinical characteristics of DN showed that C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU may participate in the development of DN. Conclusions. We confirmed that the complement cascade-related hub genes may be the novel biomarkers for DN early diagnosis and targeted treatment.


2021 ◽  
Author(s):  
Teng-di Fan ◽  
Di-kai Bei ◽  
Song-wei Li

Abstract Objective: To design a weighted co-expression network and build gene expression signature-based nomogram (GESBN) models for predicting the likelihood of bone metastasis in breast cancer (BC) patients. Methods: Dataset GSE124647 was used as a training set, and GSE14020 was taken as a validation set. In the training cohort, limma package in R was adopted to obtain differentially expressed genes (DEGs) between BC non-bone metastasis and bone metastasis patients, which were used for functional enrichment analysis. After weighted co-expression network analysis (WGCNA), univariate Cox regression and Kaplan-Meier plotter analyses were performed to screen potential prognosis-related genes. Then, GESBN models were constructed and evaluated. Further, the expression levels of genes in the models were explored in the training set, which was validated in GSE14020. Finally, the prognostic value of hub genes in BC was explored. Results: A total of 1858 DEGs were obtained. WGCNA result showed that the blue module was most significantly related to bone metastasis and prognosis. After survival analyses, GAJ1, SLC24A3, ITGBL1, and SLC44A1 were subjected to construct a GESBN model for overall survival. While GJA1, IGFBP6, MDFI, ITGFBI, ANXA2, and SLC24A3 were subjected to build a GESBN model for progression-free survival. Kaplan-Meier plotter and receiver operating characteristic analyses presented the reliable prediction ability of the models. Besides, GJA1, IGFBP6, ITGBL1, SLC44A1, and TGFBI expressions were significantly different between the two groups in GSE124647 and GSE14020. The hub genes had a significant impact on patient prognosis. Conclusion: Both the four-gene signature and six-gene signature could accurately predict patient prognosis, which may provide novel treatment insights for BC bone metastasis.


2020 ◽  
Author(s):  
Xi Pan ◽  
Jian-Hao Liu

Abstract Background Nasopharyngeal carcinoma (NPC) is a heterogeneous carcinoma that the underlying molecular mechanisms involved in the tumor initiation, progression, and migration are largely unclear. The purpose of the present study was to identify key biomarkers and small-molecule drugs for NPC screening, diagnosis, and therapy via gene expression profile analysis. Methods Raw microarray data of NPC were retrieved from the Gene Expression Omnibus (GEO) database and analyzed to screen out the potential differentially expressed genes (DEGs). The key modules associated with histology grade and tumor stage was identified by using weighted correlation network analysis (WGCNA). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes in the key module were performed to identify potential mechanisms. Candidate hub genes were obtained, which based on the criteria of module membership (MM) and high connectivity. Then we used receiver operating characteristic (ROC) curve to evaluate the diagnostic value of hub genes. The Connectivity map database was further used to screen out small-molecule drugs of hub genes. Results A total of 430 DEGs were identified based on two GEO datasets. The green gene module was considered as key module for the tumor stage of NPC via WGCNA analysis. The results of functional enrichment analysis revealed that genes in the green module were enriched in regulation of cell cycle, p53 signaling pathway, cell part morphogenesis. Furthermore, four DEGs-related hub genes in the green module were considered as the final hub genes. Then ROC revealed that the final four hub genes presented with high areas under the curve, suggesting these hub genes may be diagnostic biomarkers for NPC. Meanwhile, we screened out several small-molecule drugs that have provided potentially therapeutic goals for NPC. Conclusions Our research identified four potential prognostic biomarkers and several candidate small-molecule drugs for NPC, which may contribute to the new insights for NPC therapy.


Sign in / Sign up

Export Citation Format

Share Document