scholarly journals Nomogram Models Based on Gene Expression in Prediction of Breast Cancer Bone Metastasis

Author(s):  
Teng-di Fan ◽  
Di-kai Bei ◽  
Song-wei Li

Abstract Objective: To design a weighted co-expression network and build gene expression signature-based nomogram (GESBN) models for predicting the likelihood of bone metastasis in breast cancer (BC) patients. Methods: Dataset GSE124647 was used as a training set, and GSE14020 was taken as a validation set. In the training cohort, limma package in R was adopted to obtain differentially expressed genes (DEGs) between BC non-bone metastasis and bone metastasis patients, which were used for functional enrichment analysis. After weighted co-expression network analysis (WGCNA), univariate Cox regression and Kaplan-Meier plotter analyses were performed to screen potential prognosis-related genes. Then, GESBN models were constructed and evaluated. Further, the expression levels of genes in the models were explored in the training set, which was validated in GSE14020. Finally, the prognostic value of hub genes in BC was explored. Results: A total of 1858 DEGs were obtained. WGCNA result showed that the blue module was most significantly related to bone metastasis and prognosis. After survival analyses, GAJ1, SLC24A3, ITGBL1, and SLC44A1 were subjected to construct a GESBN model for overall survival. While GJA1, IGFBP6, MDFI, ITGFBI, ANXA2, and SLC24A3 were subjected to build a GESBN model for progression-free survival. Kaplan-Meier plotter and receiver operating characteristic analyses presented the reliable prediction ability of the models. Besides, GJA1, IGFBP6, ITGBL1, SLC44A1, and TGFBI expressions were significantly different between the two groups in GSE124647 and GSE14020. The hub genes had a significant impact on patient prognosis. Conclusion: Both the four-gene signature and six-gene signature could accurately predict patient prognosis, which may provide novel treatment insights for BC bone metastasis.

Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 726
Author(s):  
Hoang Dang Khoa Ta ◽  
Wan-Chun Tang ◽  
Nam Nhut Phan ◽  
Gangga Anuraga ◽  
Sz-Ying Hou ◽  
...  

Breast cancer (BRCA) is one of the most complex diseases and involves several biological processes. Members of the L-antigen (LAGE) family participate in the development of various cancers, but their expressions and prognostic values in breast cancer remain to be clarified. High-throughput methods for exploring disease progression mechanisms might play a pivotal role in the improvement of novel therapeutics. Therefore, gene expression profiles and clinical data of LAGE family members were acquired from the cBioportal database, followed by verification using the Oncomine and The Cancer Genome Atlas (TCGA) databases. In addition, the Kaplan-Meier method was applied to explore correlations between expressions of LAGE family members and prognoses of breast cancer patients. MetaCore, GlueGo, and GluePedia were used to comprehensively study the transcript expression signatures of LAGEs and their co-expressed genes together with LAGE-related signal transduction pathways in BRCA. The result indicated that higher LAGE3 messenger (m)RNA expressions were observed in BRCA tissues than in normal tissues, and they were also associated with the stage of BRCA patients. Kaplan-Meier plots showed that overexpression of LAGE1, LAGE2A, LAGE2B, and LAGE3 were highly correlated to poor survival in most types of breast cancer. Significant associations of LAGE family genes were correlated with the cell cycle, focal adhesion, and extracellular matrix (ECM) receptor interactions as indicated by functional enrichment analyses. Collectively, LAGE family members’ gene expression levels were related to adverse clinicopathological factors and prognoses of BRCA patients; therefore, LAGEs have the potential to serve as prognosticators of BRCA patients.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bo Zhang ◽  
Yanlin Gu ◽  
Guoqin Jiang

PurposeN6-methyladenosine (m6A) is the most prevalent modification in mRNA methylation which has a wide effect on biological functions. This study aims to figure out the efficacy of m6A RNA methylation regulator-based biomarkers with prognostic significance in breast cancer.Patients and MethodsThe 23 RNA methylation regulators were firstly analyzed through ONCOMINE, then relative RNA-seq transcriptome and clinical data of 1,096 breast cancer samples and 112 normal tissue samples were acquired from The Cancer Gene Atlas (TCGA) database. The expressive distinction was also showed by the Gene Expression Omnibus (GEO) database. The gene expression data of m6A RNA regulators in human tissues were acquired from the Genotype-Tissue Expression (GTEx) database. The R v3.5.1 and other online tools such as STRING, bc-GeneExminer v4.5, Kaplan-Meier Plotter were applied for bioinformatics analysis.ResultsResults from ONCOMINE, TCGA, and GEO databases showed distinctive expression and clinical correlations of m6A RNA methylation regulators in breast cancer patients. The high expression of YTHDF3, ZC3H13, LRPPRC, and METTL16 indicated poor survival rate in patients with breast cancer, while high expression of RBM15B pointed to a better survival rate. Both univariate and multivariate Cox regression analyses revealed that age and risk scores were related to overall survival (OS). Univariate analysis also delineated that stage, tumor (T) status, lymph node (N) status, and metastasis (M) status were associated with OS. From another perspective, Kaplan-Meier Plotter platform showed that the relatively high expression of YTHDF3 and LRPPRC and the relatively low expression of RBM15B, ZC3H13, and METTL16 in breast cancer patients had worse Relapse-Free Survival (RFS). Breast Cancer Gene-Expression Miner v4.5 showed that LRPPRC level was negatively associated with ER and PR expression, while METTL16, RBM15B, ZC3H13 level was positively linked with ER and PR expression. In HER-2 (+) breast cancer patients, the expression of LRPPRC, METTL16, RBM15B, and ZC3H13 were all lower than the HER-2 (−) group.ConclusionThe significant difference in expression levels and prognostic value of m6A RNA methylation regulators were analyzed and validated in this study. This signature revealed the potential therapeutic value of m6A RNA methylation regulators in breast cancer.


2020 ◽  
Author(s):  
tao ming Shao ◽  
zhi yang Hu ◽  
wen wei Li ◽  
long yun Pan

Abstract Purpose. Breast cancer (BC) has a poor prognosis when brain metastases (BM) occur, and the treatment effect is limited. In this study, we aim to identify representative candidate biomarkers for clinical prognosis of patients with BM and explore the mechanisms underlying the progression of BC.Methods. Herein, we examined the Microarray datasets (GSE125989) obtained from the Gene Expression Omnibus database to find the target genes in BC patients with BM. We employed the GEO2R tool to filter the differentially expressed genes (DEGs) that participate in primary BC and BC with BM. Subsequently, using the DAVID tool, we conducted an enrichment analysis with the screened DEGs based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional annotation. The STRING database was employed to analyze the protein-protein interactions of the DEGs and visualized using Cytoscape software. Lastly, the Kaplan-Meier plotter database was employed to determine the prognostic potential of hub genes in BC.Results. We screened out 311 upregulated DEGs and 104 downregulated DEGs. The enrichment analyses revealed that all the DEGs were` enriched in the biological process of extracellular matrix organization, cell adhesion, proteolysis, collagen catabolic process and immune response. The significant enrichment pathways were focal adhesion, protein absorption and digestion, ECM-receptor interaction, PI3K-Akt signalling pathway, and Pathways in cancer. The top ten hub nodes screened out included FN1, VEGFA, COL1A1, MMP2, COL3A1, COL1A2, POSTN, DCN, BGN and LOX. The Kaplan-Meier plotter results showed that the three hub genes (FN1, VEGFA and DCN) are candidate biomarkers for clinical prognosis of patients with BM.Conclusion. we identified seven genes related to poor prognosis in BCBM. FN1, VEGFA and DCN can be considered as potential prognostic markers for BCBM. Meantime, COL1A1, POSTN, BGN and LOX may be linked to the distant transformation of BC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ding Wang ◽  
Guodong Wei ◽  
Ju Ma ◽  
Shuai Cheng ◽  
Longyuan Jia ◽  
...  

Abstract Background Breast cancer (BRCA) is a malignant tumor with high morbidity and mortality, which is a threat to women’s health worldwide. Ferroptosis is closely related to the occurrence and development of breast cancer. Here, we aimed to establish a ferroptosis-related prognostic gene signature for predicting patients’ survival. Methods Gene expression profile and corresponding clinical information of patients from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The Least absolute shrinkage and selection operator (LASSO)-penalized Cox regression analysis model was utilized to construct a multigene signature. The Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) curves were plotted to validate the predictive effect of the prognostic signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes, Genomes (KEGG) pathway and single-sample gene set enrichment analysis (ssGSEA) were performed for patients between the high-risk and low-risk groups divided by the median value of risk score. Results We constructed a prognostic signature consisted of nine ferroptosis-related genes (ALOX15, CISD1, CS, GCLC, GPX4, SLC7A11, EMC2, G6PD and ACSF2). The Kaplan-Meier curves validated the fine predictive accuracy of the prognostic signature (p < 0.001). The area under the curve (AUC) of the ROC curves manifested that the ferroptosis-related signature had moderate predictive power. GO and KEGG functional analysis revealed that immune-related responses were largely enriched, and immune cells, including activated dendritic cells (aDCs), dendritic cells (DCs), T-helper 1 (Th1), were higher in high-risk groups (p < 0.001). Oppositely, type I IFN response and type II IFN response were lower in high-risk groups (p < 0.001). Conclusion Our study indicated that the ferroptosis-related prognostic signature gene could serve as a novel biomarker for predicting breast cancer patients’ prognosis. Furthermore, we found that immunotherapy might play a vital role in therapeutic schedule based on the level and difference of immune-related cells and pathways in different risk groups for breast cancer patients.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Yadong Wu ◽  
Feng liu ◽  
Siyang Luo ◽  
Xinhai Yin ◽  
Dengqi He ◽  
...  

Abstract Breast cancer (BC) is the most common leading cause of cancer-related death in women worldwide. Gene expression profiling analysis for human BCs has been studied previously. However, co-expression analysis for BC cell lines is still devoid to date. The aim of the study was to identify key pathways and hub genes that may serve as a biomarker for BC and uncover potential molecular mechanism using weighted correlation network analysis. We analyzed microarray data of BC cell lines (GSE 48213) listed in the Gene Expression Omnibus database. Gene co-expression networks were used to construct and explore the biological function in hub modules using the weighted correlation network analysis algorithm method. Meanwhile, Gene ontology and KEGG pathway analysis were performed using Cytoscape plug-in ClueGo. The network of the key module was also constructed using Cytoscape. A total of 5000 genes were selected, 28 modules of co-expressed genes were identified from the gene co–expression network, one of which was found to be significantly associated with a subtype of BC lines. Functional enrichment analysis revealed that the brown module was mainly involved in the pathway of the autophagy, spliceosome, and mitophagy, the black module was mainly enriched in the pathway of colorectal cancer and pancreatic cancer, and genes in midnightblue module played critical roles in ribosome and regulation of lipolysis in adipocytes pathway. Three hub genes CBR3, SF3B6, and RHPN1 may play an important role in the development and malignancy of the disease. The findings of the present study could improve our understanding of the molecular pathogenesis of breast cancer.


2021 ◽  
Author(s):  
chanyuan li ◽  
Ting Wan ◽  
Ting Deng ◽  
Junya Cao ◽  
He Huang ◽  
...  

Abstract Background: Epithelial ovarian cancer is nowadays one of the malignancies in women, this study aimed to identify novel biomarkers to predict prognosis and immunotherapy efficacy.Methods: The differentially expressed genes (DEGs) obtained from online database Gene Expression Omnibus (GEO)were screened via GEO2R and Venn diagram software, gene enrichment was analysed by Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG), then protein protein interaction(PPI)network and Cytoscape software were used to confirm the genes closely related to ovarian cancer. Survival analysis of hub genes were obtained from Kaplan–Meier plotter, with their differential expression in specimen validated by Gene Expression Profiling Interactive Analysis (GEPIA) and an integrated repository portal for tumor-immune system interactions (TISIDB). Finally, we used the Tumor Immune Estimation Resource 2.0 (TIMER2.0) and application Estimate the Proportion of Immune and Cancer cells (EPIC) to search the immune infiltration characteristics of the genes.Results: 355 DEGs between epithelial ovarian cancer and normal ovarian tissue were screened out. These DEGs were associated with extracellular exosome, bicellular tight junction and cell-cell junction, and remarkably enriched in molecules of cell adhesion and leukocyte transendothelial migration activity. Ten hub genes were identified via protein protein interaction (PPI) network: PTAFR, HLA-DRA, OAS2, OAS3, PTPN6, LYN, VAMP8, IRF6, ITGB2, CD47. Furthermore, the Kaplan–Meier plotter was conducted, overexpression of four genes was positively connected to poor prognosis in ovarian cancer:OAS2, OAS3, ITGB2, CD47,which were also correlated with immune infiltrates in ovarian cancer and had the highest degree of correlation with tumor associated macrophages (TAMs) infiltration, among which ITGB2 was highly correlated with TAMs infiltration level.Conclusion: ITGB2, OAS2, OAS3, and CD47 are upregulated with unfavorable prognosis in ovarian cancer, and ITGB2 may act as a novel prognostic biomarker with immune infiltration values.


2021 ◽  
Vol 10 ◽  
Author(s):  
Dai Zhang ◽  
Yi Zheng ◽  
Si Yang ◽  
Yiche Li ◽  
Meng Wang ◽  
...  

To identify a glycolysis-related gene signature for the evaluation of prognosis in patients with breast cancer, we analyzed the data of a training set from TCGA database and four validation cohorts from the GEO and ICGC databases which included 1,632 patients with breast cancer. We conducted GSEA, univariate Cox regression, LASSO, and multiple Cox regression analysis. Finally, an 11-gene signature related to glycolysis for predicting survival in patients with breast cancer was developed. And Kaplan–Meier analysis and ROC analyses suggested that the signature showed a good prognostic ability for BC in the TCGA, ICGC, and GEO datasets. The analyses of univariate Cox regression and multivariate Cox regression revealed that it’s an important prognostic factor independent of multiple clinical features. Moreover, a prognostic nomogram, combining the gene signature and clinical characteristics of patients, was constructed. These findings provide insights into the identification of breast cancer patients with a poor prognosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xuting Xu ◽  
Limin Xu ◽  
Huilian Huang ◽  
Jing Li ◽  
Shunli Dong ◽  
...  

Lung cancer is one of the most malignant tumors in the world. Early diagnosis and treatment of lung cancer are vitally important to reduce the mortality of lung cancer patients. In the present study, we attempt to identify the candidate biomarkers for lung cancer by weighted gene co-expression network analysis (WGCNA). Gene expression profile of GSE30219 was downloaded from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) were analyzed by the limma package, and the co-expression modules of genes were built by WGCNA. UALCAN was used to analyze the relative expression of normal group and tumor subgroups based on tumor individual cancer stages. Survival analysis for the hub genes was performed by Kaplan–Meier plotter analysis with the TCGA database. A total of 2176 genes (745 upregulated and 1431 downregulated genes) were obtained from the GSE30219 database. Seven gene co-expression modules were conducted by WGCNA and the blue module might be inferred as the most crucial module in the pathogenesis of lung cancer. In the pathway enrichment analysis of KEGG, the candidate genes were enriched in the “DNA replication,” “Cell cycle,” and “P53 signaling pathway” pathways. Among these, the cell cycle pathway was the most significant pathway in the blue module with four hub genes CCNB1, CCNE2, MCM7, and PCNA which were selected in our study. Kaplan–Meier plotter analysis indicated that the high expressions of four hub genes were correlated with a worse overall survival (OS) and advanced tumors. qRT-PCR showed that mRNA expression levels of MCM7 (p=0.038) and CCNE2 (0.003) were significantly higher in patients with the TNM stage. In summary, the high expression of the MCM7 and CCNE2 were significantly related with advanced tumors and worse OS in lung cancer. Thus, the MCM7 and CCNE2 genes can be good indicators for cellular proliferation and prognosis in lung cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yaqian Liu ◽  
Bo Pan ◽  
Weikun Qu ◽  
Yilong Cao ◽  
Jun Li ◽  
...  

Abstract Background Breast cancer (BC) remains a prevalent and common form of cancer with high heterogeneity. Making efforts to explore novel molecular biomarkers and serve as potential disease indicators, which is essential to effectively enhance the prognosis and individualized treatment of BC. FBXO proteins act as the core component of E3 ubiquitin ligase, which play essential regulators roles in multiple cellular processes. Recently, research has indicated that FBXOs also play significant roles in cancer development. However, the molecular functions of these family members in BC have not been fully elucidated. Methods In this research, we investigated the expression data, survival relevance and mutation situation of 10 FBXO members (FBXO1, 2, 5, 6, 16, 17, 22, 28, 31 and 45) in patients with BC from the Oncomine, GEPIA, HPA, Kaplan–Meier Plotter, UALCAN and cBioPortal databases. The high transcriptional levels of FBXO1 in different subtypes of BC were verified by immunohistochemical staining and the specific mutations of FBXO1 were obtained from COSMIC database. Top 10 genes with the highest correlation to FBXO1 were identified through cBioPortal and COXPRESdb tools. Additionally, functional enrichment analysis, PPI network and survival relevance of FBXO1 and co-expressed genes in BC were obtained from DAVID, STRING, UCSC Xena, GEPIA, bc-GenExMiner and Kaplan–Meier Plotter databases. FBXO1 siRNAs were transfected into MCF-7 and MDA-MB-231 cell lines. Expression of FBXO1 in BC cell lines was detected by western-blot and RT-qPCR. Cell proliferation was detected by using CCK-8 kit and colony formation assay. Cell migration was detected by wound‐healing and transwell migration assay. Results We found that FBXO2, FBXO6, FBXO16 and FBXO17 were potential favorable prognostic factors for BC. FBXO1, FBXO5, FBXO22, FBXO28, FBXO31 and FBXO45 may be the independent poor prognostic factors for BC. All of them were correlated to clinicopathological staging. Moreover, knockdown of FBXO1 in MCF7 and MDA-MB-231 cell lines resulted in decreased cell proliferation and migration in vitro. We identified that FBXO1 was an excellent molecular biomarker and therapeutic target for different molecular typing of BC. Conclusion This study implies that FBXO1, FBXO2, FBXO5, FBXO6, FBXO16, FBXO17, FBXO22, FBXO28, FBXO31 and FBXO45 genes are potential clinical targets and prognostic biomarkers for patients with different molecular typing of BC. In addition, the overexpression of FBXO1 is always found in breast cancer and predicts disadvantageous prognosis, implicating it could as an appealing therapeutic target for breast cancer patients.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Dandan Li ◽  
Wenhao Zhao ◽  
Xinyu Zhang ◽  
Hanning Lv ◽  
Chunhong Li ◽  
...  

Abstract Background This study aims to determine whether NEFM (neurofilament medium) DNA methylation correlates with immune infiltration and prognosis in breast cancer (BRCA) and to explore NEFM-connected immune gene signature. Methods NEFM transcriptional expression was analyzed in BRCA and normal breast tissues using Oncomine and Tumor Immune Estimation Resource (TIMER) databases. The relationship between NEFM DNA methylation and NEFM transcriptional expression was investigated in TCGA. Potential influence of NEFM DNA methylation/expression on clinical outcome was evaluated using TCGA BRCA, The Human Protein Atlas and Kaplan–Meier plotter databases. Association of NEFM transcriptional expression/DNA methylation with cancer immune infiltration was investigated using TIMER and TISIDB databases. Results High expression of NEFM correlated with better overall survival (OS) and recurrence-free survival (RFS) in TCGA BRCA and Kaplan–Meier plotter, whereas NEFM DNA methylation with worse OS in TCGA BRCA. NEFM transcriptional expression negatively correlated with DNA methylation. NEFM DNA methylation significantly negatively correlated with infiltrating levels of B, CD8+ T/CD4+ T cells, macrophages, neutrophils and dendritic cells in TIMER and TISIDB. NEFM expression positively correlated with macrophage infiltration in TIMER and TISIDB. After adjusted with tumor purity, NEFM expression weekly negatively correlated with infiltration level of B cells, whereas positively correlated with CD8+ T cell infiltration in TIMER gene modules. NEFM expression/DNA methylation correlated with diverse immune markers in TCGA and TISIDB. Conclusions NEFM low-expression/DNA methylation correlates with poor prognosis. NEFM expression positively correlates with macrophage infiltration. NEFM DNA methylation strongly negatively correlates with immune infiltration in BRCA. Our study highlights novel potential functions of NEFM expression/DNA methylation in regulation of tumor immune microenvironment.


Sign in / Sign up

Export Citation Format

Share Document