A Kalman Filter for Inverse Dynamics of IMU-Based Real-Time Joint Torque Estimation

2022 ◽  
Vol 39 (1) ◽  
pp. 69-77
Author(s):  
JiSeok Choi ◽  
ChangJune Lee ◽  
JungKeun Lee
2021 ◽  
Vol 6 (1) ◽  
pp. 103-110
Author(s):  
Kyu Min Park ◽  
Jihwan Kim ◽  
Jinhyuk Park ◽  
Frank C. Park

Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


Sign in / Sign up

Export Citation Format

Share Document