scholarly journals Study on the fractal model of water immersed collapse of Soft Rock

2020 ◽  
Vol 19 (3) ◽  
pp. 486-491
Author(s):  
Lujun Ding ◽  
◽  
Yuhong Liu

Soft rock is a common rock mass in engineering, one of its characteristics is water swelling and disintegration. In this paper, the nonlinear fractal geometry is introduced and the correlation fractal dimension is used to study the characteristics of slate disintegration, based on the laboratory test of water immersion disintegration, the method of quality fractal dimension is used to solve the fractal dimension of the disintegration of slate, and the change of fractal dimension is used to reflect the characteristics of the softening and disintegration of slate when encountering water. The experimental results show that the fractal model can be used to fully understand the development and evolution of rock disintegration process, and to quantitatively link the relationship between rock expansion and disintegration. The conclusion has guiding significance for engineering practice.

2013 ◽  
Vol 423-426 ◽  
pp. 1051-1054
Author(s):  
Tian Yang Zhai

A fractal model to simulate cement paste internal pore structure, and on this basis deduce that fractal dimension is D and the corresponding pore is r, the relationship between porosity is P. MIP was measured test. Then calculated the different ages of the fractal dimension of cement and concrete compressive strength, tensile strength and permeability coefficient. The results showed that: compressive strength, permeability and fractal dimension has a good correlation. Whey in cement in the process of hydration of cement products continue to fill the pores, making the compressive strength increased 70%, permeability is declining.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Yanan Gao ◽  
Feng Gao ◽  
Man-chu Ronald Yeung

This paper features a numerical study that is carried out by using discontinuous deformation method (DDA) and fractal geometry. The configurations of rock strata calculated by DDA were imported into a code that is written by using VC++ called “Fractal” to calculate the fractal dimension of the rock strata. As illustrated, a long wall mining case in China was presented. The relationship of the fractal dimension, excavation length, stress, and movement of strata were discussed. The evolution of fractal dimension can be considered as an index of instability or failure. The method proposed in this paper can be employed to predict the period weighting in long wall mining engineering.


2001 ◽  
Vol 79 (5-6) ◽  
pp. 817-822 ◽  
Author(s):  
Josephine Mary Hill ◽  
Flora TT Ng

Metal compounds are contaminants in heavy oil and must be removed using hydrodemetallization catalysts. To optimize the structure of hydrodemetallization catalysts it is useful to know the effective size of the metal compounds. To this end, fractal geometry has been used to determine the relationship between monolayer coverage and adsorbate size for silica by adsorbing a series of alcohols at 298 K. It was found that the silica had a fractal dimension of 2.923. Etioporphyrin and Ni-etioporphyrin were then adsorbed on the silica and their effective areas determined based on this fractal dimension. Cross-sectional areas of 4.58 and 14.8 nm2 were determined for etioporphyrin and Ni-etioporphyrin, respectively. The areas are larger than those determined by X-ray methods and likely reflect the fact that the porphyrins are solvated with solvent (cyclohexane) molecules.


Author(s):  
Khadijeh Faridi Nia ◽  
Asghar Teymoorian ◽  
Mojtaba Babaei

One of the most important steps to obtain the specified density Bouguer anomaly corrections for the topography of the page Bouguer is the most commonly used way in which the relationship between topography and Bouguer anomaly in the method assumes that topography of the rigid shell instead Isoztasi balance is maintained. The method to determine the density of Bouguer provided by fractal analyze these are the lowest density dependence the topography of the area is considered as the optimal density and the fractal relationship to the topography of the fractal dimension using the Bouguer anomaly.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950109
Author(s):  
QIANMI YU ◽  
JIANKUN LIU ◽  
UJWALKUMAR D. PATIL ◽  
SURYA S. C. CONGRESS ◽  
ANAND J. PUPPALA

The research on the ultimate crushing state of coarse aggregates is beneficial to analyze and predict the evolutionary process of crushing. The Growing Path method uses the two-dimensional fractal geometry structure to simulate the size variation of particle size fraction during the particle breakage of coarse aggregates and it serves to investigate the ultimate fractal dimension corresponding to the ultimate crushing state of coarse aggregates. This method manifests the self-growing characteristics of particle size distribution in the process of particle crushing. This study found that the two-dimensional image of ultimate fractal model was precisely similar to that of the Sierpinski gasket of fractal theory when the ultimate crushing state was reached. The results from the model analysis show that the theoretically ultimate fractal dimension is about 2.585, which is consistent with the existing results calculated from the three-dimensional ultimate fragmentation model of cataclastic rock located in the fault zones. The relationship between two fractal models was analyzed. Furthermore, the application of fractal geometry presented in this study will also serve as a reference for the analysis of the other chaos phenomena observed in geotechnical engineering.


2013 ◽  
Vol 827 ◽  
pp. 394-399
Author(s):  
Hao Li

Basing on fractal geometry theory, establish fractal calculation model in effective stress, analyze and discuss the relationship between microstructure of porous medium and effective stress, reveal the influence law of the latter on the former. The results of the study show that the fractal calculation model of effective stress can describe the relationship between them. With the increase of effective stress, the fractal dimension of porous medium increases exponentially, porosity and pore number in porous medium decrease exponentially and mean radius of pore decreases.


2005 ◽  
Vol 1 (1) ◽  
pp. 21-24
Author(s):  
Hamid Reza Samadi

In exploration geophysics the main and initial aim is to determine density of under-research goals which have certain density difference with the host rock. Therefore, we state a method in this paper to determine the density of bouguer plate, the so-called variogram method based on fractal geometry. This method is based on minimizing surface roughness of bouguer anomaly. The fractal dimension of surface has been used as surface roughness of bouguer anomaly. Using this method, the optimal density of Charak area insouth of Hormozgan province can be determined which is 2/7 g/cfor the under-research area. This determined density has been used to correct and investigate its results about the isostasy of the studied area and results well-coincided with the geology of the area and dug exploratory holes in the text area


2012 ◽  
Vol 226-228 ◽  
pp. 1789-1794 ◽  
Author(s):  
Shu Ren Wang ◽  
Paul Hagan ◽  
Yan Cheng

It is the key to guide rock-breaking design and engineering practice for how to obtain a reasonable test indicator to assess the cuttability of the rock. Some sandstone samples were tested by using the linear rock cutting machine in the school of mining engineering, University of New South Wales (UNSW), Australia. The curves characteristics for the weight percent of the broken debris with the mesh size distribution were obtained through the screening statistics. Furthermore, the fractal dimension of the specimen broken debris was derived through theoretical calculations and statistical analysis. The results showed that the rock cutting fragmentation is of significant fractal features under the mechanical shock loads. The broken debris fractal dimension of the structural integrity specimens is bigger, the range of the fractal dimension is smaller and the broken debris size distribution is more even than that of the poor structural integrity specimens. The fractal dimension is the ideal test indicator to assess and analysis the rock-breaking degree.


2012 ◽  
Vol 229-231 ◽  
pp. 495-498
Author(s):  
Hui Xin Liu ◽  
Xian Min Yang ◽  
Cheng Tao Li ◽  
Xiang Cheng

There is a common problem during kill a well, which is how to quickly and accurately control the surface casing pressure according to the requirements for killing a well. A step-by-step exploration process is employed on operation sites. Continuously adjusting throttle valve to acquire surface casing pressure may lead to failure of kill operation because of its long time and low control accuracy. Obviously, if the calculation problems of throttling drawdown can be resolved,the relationship between drawdown and throttle valve opening can be found and the course of explorating can be converted into a straight course.Then the success rate of killing well can be improved. More importantly, this can make automatic controll of surface casing pressure possible. The paper built the calculation method of throttling pressure drop by theoretical analysis and verified the calculation method by adopting it into field test. The result has showed that the calculation method of throttling pressure drop coincides with experimental results and it can be used in engineering practice.


Sign in / Sign up

Export Citation Format

Share Document