scholarly journals Two Dimensional Numerical Study in Gangway of Next Generation High Speed Train For Reduction of Aero-acoustic Noise

2011 ◽  
Vol 14 (4) ◽  
pp. 327-332 ◽  
Author(s):  
Hyung-Min Kang ◽  
Cheol-Wan Kim ◽  
Tae-Hwan Cho ◽  
Wan-Ho Jeon ◽  
Su-Hwan Yun ◽  
...  
2011 ◽  
Vol 368-373 ◽  
pp. 2575-2580 ◽  
Author(s):  
Long Long Fu ◽  
Quan Mei Gong ◽  
Yang Wang

To investigate the dynamic transfer characteristics of low geosynthetic-reinforced embankments supported by CFG piles under high-speed train load, a numerical study has been conducted through dynamic finite element method on basis of the dynamic field test on a cross-section of Beijing-Shanghai high-speed railway. The comparative analysis on results of numerical study and field test indicated the distribution characteristics of vertical dynamic stress induced by high-speed train load in subgrade soil under railway line. The numerical results also suggested a high stress area in subgrade where vertical dynamic stress is over 1kPa. Conclusions of this work can provide reference for both design and estimation of long-term settlement of low geosynthetic-reinforced embankments supported by CFG piles for high-speed railway.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chih-hung Chiang ◽  
Pei-hsun Tsai

This study used the 2D boundary element method in time domain to examine the screening effectiveness of open trenches on reducing vibration generated by a high-speed train. The parameters included configurations of the trench, train speed, the distance between the source and the trench, and the Poisson’s ratio of the soil. A reducing displacement level (in dB scale) was defined and used to evaluate the screening effectiveness of a wave barrier. The maximal reducing displacement level reached 25 dB when an open trench was used as a wave barrier. The depth of an open trench is a main influential parameter of screening effectiveness. The cutoff frequency of the displacement spectrum increases with decreasing trench depth. The maximal screening effectiveness occurs when the depth is 0.3-0.4 Rayleigh wavelength. Using an open trench as a wave barrier can reduce 10–25 dB of vibration amplitude at frequencies between 30 and 70 Hz. A considerable increase in screening effectiveness of the open trench was observed from 30 to 70 Hz, which matches the main frequencies of vibration induced by Taiwan High Speed Rail. The influence of trench width on screening effectiveness is nonsignificant except for frequencies from 30 to 40 Hz. Poisson’s ratio has various effects on the reduction of vibration at frequencies higher than 30 Hz.


2018 ◽  
Vol 18 (11) ◽  
pp. 1850132 ◽  
Author(s):  
Jian Dai ◽  
Kok Keng Ang ◽  
Van Hai Luong ◽  
Minh Thi Tran ◽  
Dongqi Jiang

This paper presents a numerical study on the out-of-plane responses of a high-speed train running on a curved railway track segment using the moving element method. The accuracy and efficiency of the proposed computation model presented herein are compared with available analytical results from the literature and a finite element solver based on a simplified moving load model. Thereafter, a half-railcar moving sprung-mass model and a double-rail track-foundation model are presented to investigate the behavior of a high-speed train traversing a curved track, particularly when the train speed is greater than the design speed of the curved track segment. The results show that the train speed and severity of track irregularity significantly affect the contact forces on the rails. This paper also presents a case of a railcar overturning when the train speed is greater than 2.5 times the design speed of a curved track segment.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Alireza Mahdavi Nejad ◽  
Gretar Tryggvason

Abstract A computational model of a massless kite that produces power in an airborne wind energy (AWE) system is presented. AWE systems use tethered kites at high altitudes to extract energy from the wind and are being considered as an alternative to wind turbines since the kites can move in high-speed cross-wind motions over large swept areas to increase power production. In our model, the kite completes successive power-retraction cycles where the kite angle of attack is altered as required to vary the resultant aerodynamic forces on the kite. The flow field is found in a two-dimensional domain near the flexible kite by solving the full Navier–Stokes equations using an Eulerian grid together with a Lagrangian representation of the kite. The flow solver is a finite volume projection method using a non-uniform mesh on a staggered grid and corrector–predictor technique to ensure a second-order accuracy in time. The two-dimensional kite shape is modeled as a slightly cambered immersed boundary that moves with the flow. The flexible kite is modeled with a set of linear springs following Hooke’s law. The unstretched length of each elastic tether at a given time step is controlled using periodic triangular wave shapes to achieve the required power-retraction phases. A study was conducted in which the wave shape amplitude, frequency, and phase (between two tethers) were adjusted to achieve a suitably high net power output. The results are in good agreement with predictions for Loyd’s simple kite in two-dimensional motion. Aerodynamic coefficients for the kite, tether tensions, tether reel-out and reel-in speeds, and the vorticity fields in the kite wake are also determined.


Sign in / Sign up

Export Citation Format

Share Document