scholarly journals Soil biodiversity and organic carbon are essential to reverse desertification

Ecosistemas ◽  
2021 ◽  
Vol 30 (3) ◽  
pp. 2238
Author(s):  
Miriam Muñoz-Rojas ◽  
Manuel Delgado-Baquerizo ◽  
Manuel Esteban Lucas-Borja

La biodiversidad y el carbono orgánico del suelo, así como la interacción entre ambos, juegan papeles esenciales en el mantenimiento y regulación de los servicios ecosistémicos de las zonas secas, desde la fertilidad del suelo a la producción de alimentos. El cambio climático y los impactos antrópicos pueden provocar pérdidas en la biodiversidad y carbono del suelo, lo cual puede resultar en alteraciones de los ciclos del carbono y la funcionalidad de los ecosistemas derivando en procesos acelerados de desertificación. Es necesario, por tanto, mejorar nuestro conocimiento sobre la compleja diversidad biológica del suelo, así como su interacción con el carbono orgánico en las zonas secas. Esto nos permitirá diseñar estrategias efectivas para promover el secuestro de carbono en el suelo, contribuyendo así a revertir los procesos de degradación y desertificación. En esta revisión discutimos la importancia de la biodiversidad y el carbono orgánico del suelo de las zonas secas en un contexto de cambio global, definiendo la relación entre ambos y su respuesta a factores climáticos y degradación. También destacamos el uso de herramientas avanzadas tales como la genómica, y practicas relevantes de manejo del suelo que nos permitan incrementar los contenidos de carbono y mejorar la diversidad y funcionalidad de suelo en las zonas secas, con el fin último de prevenir y revertir la desertificación.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


Soil Research ◽  
2008 ◽  
Vol 46 (2) ◽  
pp. 173 ◽  
Author(s):  
N. R. Hulugalle ◽  
F. Scott

In agricultural systems, soil quality is thought of in terms of productive land that can maintain or increase farm profitability, as well as conserving soil resources so that future farming generations can make a living. Management practices which can modify soil quality include tillage systems and crop rotations. A major proportion of Australian cotton (Gossypium hirsutum L.) is grown on Vertosols (~75%), of which almost 80% is irrigated. These soils have high clay contents (40–80 g/100 g) and strong shrink–swell capacities, but are frequently sodic at depth and prone to deterioration in soil physical quality if incorrectly managed. Due to extensive yield losses caused by widespread deterioration of soil structure and declining fertility associated with tillage, trafficking, and picking under wet conditions during the middle and late 1970s, a major research program was initiated with the objective of developing soil management systems which could improve cotton yields while concurrently ameliorating and maintaining soil structure and fertility. An outcome of this research was the identification of cotton–winter crop sequences sown in a 1 : 1 rotation as being able to sustain lint yields while at the same time maintaining soil physical quality and minimising fertility decline. Consequently, today, a large proportion (~75%) of Australian cotton is grown in rotation with winter cereals such as wheat (Triticum aestivum L.), or legumes such as faba bean (Vicia faba L.). A second phase of research on cotton rotations in Vertosols was initiated during the early 1990s with the main objective of identifying sustainable cotton–rotation crop sequences; viz. crop sequences which maintained and improved soil quality, minimised disease incidence, facilitated soil organic carbon sequestration, and maximised economic returns and cotton water use efficiency in the major commercial cotton-growing regions of Australia. The objective of this review was to summarise the key findings of both these phases of Australian research with respect to soil quality and profitability, and identify future areas of for research. Wheat rotation crops under irrigated and dryland conditions and in a range of climates where cotton is grown can improve soil quality indicators such as subsoil structure, salinity, and sodicity under irrigated and dryland conditions, while leguminous crops can increase available nitrogen by fixing atmospheric nitrogen, and by reducing N volatilisation and leaching losses. Soil organic carbon in most locations has decreased with time, although the rate of decrease may be reduced by sowing crop sequences that return about 2 kg/m2.crop cycle of residues to the soil, minimising tillage and optimising N inputs. Although the beneficial effects of soil biodiversity on quality of soil are claimed to be many, except for a few studies on soil macrofauna such as ants, conclusive field-based evidence to demonstrate this has not been forthcoming with respect to cotton rotations. In general, lowest average lint yields per hectare were with cotton monoculture. The cotton–wheat systems generally returned higher average gross margins/ML irrigation water than cotton monoculture and other rotation crops. This indicates that where irrigation water, rather than land, is the limiting resource, cotton–wheat systems would be more profitable. Recently, the addition of vetch (Vicia villosa Roth.) to the cotton–wheat system has further improved average cotton yields and profitability. Profitability of cotton–wheat sequences varies with the relative price of cotton to wheat. In comparison with cotton monoculture, cotton–rotation crop sequences may be more resilient to price increases in fuel and fertiliser due to lower overall input costs. The profitability of cotton–rotation crop sequences such as cotton–wheat, where cotton is not sown in the same field every year, is more resilient to fluctuations in the price of cotton lint, fuel and nitrogen fertiliser. This review identified several issues with respect to cotton–rotation crop sequences where knowledge is lacking or very limited. These are: research into ‘new’ crop rotations; comparative soil quality effects of managing rotation crop stubble; machinery attachments for managing rotation crop stubble in situ in permanent bed systems; the minimum amount of crop stubble which needs to be returned per cropping cycle to increase SOC levels from present values; the relative efficacy of C3 and C4 rotation crops in relation to carbon sequestration; the interactions between soil biodiversity and soil physical and chemical quality indicators, and cotton yields; and the effects of sowing rotation crops after cotton on farm and cotton industry economic indicators such as the economic incentives for adopting new cotton rotations, farm level impacts of research and extension investments, and industry- and community/catchment-wide economic modelling of the impact of cotton research and extension activities.


Author(s):  
Peter Laban ◽  
Graciella Metternicht ◽  
Jonathan Davies

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 738
Author(s):  
Noemi Rota ◽  
Claudia Canedoli ◽  
Chiara Ferrè ◽  
Gentile Francesco Ficetola ◽  
Alessia Guerrieri ◽  
...  

Soil biodiversity is fundamental for ecosystems, ensuring many ecosystem functions, such as nutrient cycling, organic matter decomposition, soil formation, and organic carbon pool increase. Due to these roles, there is a need to study and completely understand how soil biodiversity is composed through different habitats. The aim of this study was to describe the edaphic soil community of the alpine environments belonging to the Gran Paradiso National Park, thus detecting if there are any correlation with environmental features. We studied soil fauna through environmental DNA metabarcoding. From eDNA metabarcoding, 18 families of arthropods were successfully detected, and their abundance expressed in terms of the relative frequency of sequences. Soil faunal communities of mixed coniferous forests were characterized by Isotomidae, Entomobriydae, Hypogastruridae, and Onychiuridae; while mixed deciduous forests were composed mostly by Isotomidae, Cicadidae, Culicidae, and Neelidae. Calcicolous and acidic grasslands also presented families that were not detected in forest habitats, in particular Scarabaeidae, Curculionidae, Brachyceridae, and had in general a more differentiated soil community. Results of the Canonical Component Analysis revealed that the main environmental features affecting soil community for forests were related to vegetation (mixed deciduous forests, tree basal area, tree biomass, Shannon index), soil (organic layers and organic carbon stock), and site (altitude); while for prairies, soil pH and slope were also significant in explaining soil community composition. This study provided a description of the soil fauna of alpine habitats and resulted in a description of community composition per habitat and the relation with the characteristic of vegetation, soil, and topographic features of the study area. Further studies are needed to clarify ecological roles and needs of these families and their role in ecosystem functioning.


Author(s):  
Lucian Dinca ◽  
Aurelia Onet ◽  
Alina Dora Samuel ◽  
Roberto Tognetti ◽  
Enno Uhl ◽  
...  

Fagus sylvatica is widely distributed across Europe thanks to its high adaptability in a wide variety of soils and climate. Microbial communities are essential for maintaining forest soil quality and are responsible for forest ecosystem functioning; the ability of soil microorganisms to respond to abiotic stressors (e.g. organic carbon losses, water scarcity, temperature changes), is crucial under ongoing environmental changes and also supports tree health. In this study, soil samples were collected from pure beech plots as part of the COST Action project CLIMO to find differences in microbial community characteristics and evaluate the effects of soil properties on microbial communities across altitude, latitude and longitude gradients. Positive relationships were found between organic carbon content and both microbial abundance and dehydrogenase activity. Dehydrogenase and catalase activities were altitude-correlated and microbial activities were longitude-correlated. In the most southern beech plot, microbial community was abundant and displayed high activities. This shows that microbial communities could help tree populations to better adapt to predicted changes in environmental conditions in the future. We suggest that research into forest health and beech performance should also test soil microbial enzymatic activity, in particular under changing climate conditions, to assist in identifying adaptation strategies.


Author(s):  
Dong Chen ◽  
Che-Jen Lin ◽  
R. Gavin Jones ◽  
Sehul Patel ◽  
Rachelle Smith ◽  
...  
Keyword(s):  

2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


Sign in / Sign up

Export Citation Format

Share Document