scholarly journals Evaluation of Soil Biodiversity in Alpine Habitats through eDNA Metabarcoding and Relationships with Environmental Features

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 738
Author(s):  
Noemi Rota ◽  
Claudia Canedoli ◽  
Chiara Ferrè ◽  
Gentile Francesco Ficetola ◽  
Alessia Guerrieri ◽  
...  

Soil biodiversity is fundamental for ecosystems, ensuring many ecosystem functions, such as nutrient cycling, organic matter decomposition, soil formation, and organic carbon pool increase. Due to these roles, there is a need to study and completely understand how soil biodiversity is composed through different habitats. The aim of this study was to describe the edaphic soil community of the alpine environments belonging to the Gran Paradiso National Park, thus detecting if there are any correlation with environmental features. We studied soil fauna through environmental DNA metabarcoding. From eDNA metabarcoding, 18 families of arthropods were successfully detected, and their abundance expressed in terms of the relative frequency of sequences. Soil faunal communities of mixed coniferous forests were characterized by Isotomidae, Entomobriydae, Hypogastruridae, and Onychiuridae; while mixed deciduous forests were composed mostly by Isotomidae, Cicadidae, Culicidae, and Neelidae. Calcicolous and acidic grasslands also presented families that were not detected in forest habitats, in particular Scarabaeidae, Curculionidae, Brachyceridae, and had in general a more differentiated soil community. Results of the Canonical Component Analysis revealed that the main environmental features affecting soil community for forests were related to vegetation (mixed deciduous forests, tree basal area, tree biomass, Shannon index), soil (organic layers and organic carbon stock), and site (altitude); while for prairies, soil pH and slope were also significant in explaining soil community composition. This study provided a description of the soil fauna of alpine habitats and resulted in a description of community composition per habitat and the relation with the characteristic of vegetation, soil, and topographic features of the study area. Further studies are needed to clarify ecological roles and needs of these families and their role in ecosystem functioning.

2014 ◽  
Vol 111 (14) ◽  
pp. 5266-5270 ◽  
Author(s):  
C. Wagg ◽  
S. F. Bender ◽  
F. Widmer ◽  
M. G. A. van der Heijden

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


2021 ◽  
Author(s):  
Felipe Bastida ◽  
David J. Eldridge ◽  
Carlos García ◽  
G. Kenny Png ◽  
Richard D. Bardgett ◽  
...  

AbstractThe relationship between biodiversity and biomass has been a long standing debate in ecology. Soil biodiversity and biomass are essential drivers of ecosystem functions. However, unlike plant communities, little is known about how the diversity and biomass of soil microbial communities are interlinked across globally distributed biomes, and how variations in this relationship influence ecosystem function. To fill this knowledge gap, we conducted a field survey across global biomes, with contrasting vegetation and climate types. We show that soil carbon (C) content is associated to the microbial diversity–biomass relationship and ratio in soils across global biomes. This ratio provides an integrative index to identify those locations on Earth wherein diversity is much higher compared with biomass and vice versa. The soil microbial diversity-to-biomass ratio peaks in arid environments with low C content, and is very low in C-rich cold environments. Our study further advances that the reductions in soil C content associated with land use intensification and climate change could cause dramatic shifts in the microbial diversity-biomass ratio, with potential consequences for broad soil processes.


2012 ◽  
Vol 367 (1606) ◽  
pp. 3076-3086 ◽  
Author(s):  
Andrew D. Thomas

Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO 2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO 2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO 2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO 2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO 2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a , organic carbon and scytonemin . Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands.


2021 ◽  
Author(s):  
Johannes Rousk ◽  
Lettice Hicks

<p>Soil microbial communities perform vital ecosystem functions, such as the decomposition of organic matter to provide plant nutrition. However, despite the functional importance of soil microorganisms, attribution of ecosystem function to particular constituents of the microbial community has been impeded by a lack of information linking microbial function to community composition and structure. Here, we propose a function-first framework to predict how microbial communities influence ecosystem functions.</p><p>We first view the microbial community associated with a specific function as a whole, and describe the dependence of microbial functions on environmental factors (e.g. the intrinsic temperature dependence of bacterial growth rates). This step defines the aggregate functional response curve of the community. Second, the contribution of the whole community to ecosystem function can be predicted, by combining the functional response curve with current environmental conditions. Functional response curves can then be linked with taxonomic data in order to identify sets of “biomarker” taxa that signal how microbial communities regulate ecosystem functions. Ultimately, such indicator taxa may be used as a diagnostic tool, enabling predictions of ecosystem function from community composition.</p><p>In this presentation, we provide three examples to illustrate the proposed framework, whereby the dependence of bacterial growth on environmental factors, including temperature, pH and salinity, is defined as the functional response curve used to interlink soil bacterial community structure and function. Applying this framework will make it possible to predict ecosystem functions directly from microbial community composition.</p>


2020 ◽  
Author(s):  
QUANCHAO ZENG ◽  
Yingze Meitang ◽  
Manuel Delgado-Baquerizo ◽  
Yonghong Wu ◽  
Wenfeng Tan

Abstract Background: The impacts of the conversion of natural to agricultural ecosystem on soil biodiversity and ecosystem functions are still disputable. Here, we compared the soil biodiversity (bacteria and fungi) and ecosystem functions of citrus orchards in different stages of succession (5–30 years) with those in adjacent natural ecosystems. Different management strategies were also considered for one of this stage (15 years). Results: The results indicate that changes from natural vegetation land to citrus orchards would lead to reduced soil bacterial diversity, as well as significant declines in multiple ecosystem functions associated with C cycle after 30 years of citrus plantation. However, the functions associated with N and P cycle were enhanced by the plantation. Citrus plantation negatively affected the C cycle by reducing the soil microbial diversity. Reduction in soil bacterial biodiversity was indirectly driven by increased soil acidification resulting from citrus plantation, while wheat straw addition could alleviate the reduction (15-year stage). Compared with natural vegetation, citrus plantation also reduced the relative abundance of multiple phylotypes, including Alphaproteobacteria, Deltaproteobacteria, Subgroup_6, Subgroup_4, Anaerolineae and Bacteroidia. The ecological clusters of soil bacteria and fungi were significantly associated with multiple ecosystem functions, suggesting that citrus planting altered multiple ecosystem functions via ecological clusters. Conclusions: Taken together, our results indicate that soil biodiversity, soil functions and C:N:P coupling are sensitive to the conversion of natural vegetation land to agricultural land, and further suggest that proper management of soil acidification can address some negative impacts of land use conversion on soil biodiversity and functions.


Science ◽  
2019 ◽  
Vol 365 (6455) ◽  
pp. eaav0550 ◽  
Author(s):  
T. W. Crowther ◽  
J. van den Hoogen ◽  
J. Wan ◽  
M. A. Mayes ◽  
A. D. Keiser ◽  
...  

Soil organisms represent the most biologically diverse community on land and govern the turnover of the largest organic matter pool in the terrestrial biosphere. The highly complex nature of these communities at local scales has traditionally obscured efforts to identify unifying patterns in global soil biodiversity and biogeochemistry. As a result, environmental covariates have generally been used as a proxy to represent the variation in soil community activity in global biogeochemical models. Yet over the past decade, broad-scale studies have begun to see past this local heterogeneity to identify unifying patterns in the biomass, diversity, and composition of certain soil groups across the globe. These unifying patterns provide new insights into the fundamental distribution and dynamics of organic matter on land.


Sign in / Sign up

Export Citation Format

Share Document