A review of the changes in soil quality and profitability accomplished by sowing rotation crops after cotton in Australian Vertosols from 1970 to 2006

Soil Research ◽  
2008 ◽  
Vol 46 (2) ◽  
pp. 173 ◽  
Author(s):  
N. R. Hulugalle ◽  
F. Scott

In agricultural systems, soil quality is thought of in terms of productive land that can maintain or increase farm profitability, as well as conserving soil resources so that future farming generations can make a living. Management practices which can modify soil quality include tillage systems and crop rotations. A major proportion of Australian cotton (Gossypium hirsutum L.) is grown on Vertosols (~75%), of which almost 80% is irrigated. These soils have high clay contents (40–80 g/100 g) and strong shrink–swell capacities, but are frequently sodic at depth and prone to deterioration in soil physical quality if incorrectly managed. Due to extensive yield losses caused by widespread deterioration of soil structure and declining fertility associated with tillage, trafficking, and picking under wet conditions during the middle and late 1970s, a major research program was initiated with the objective of developing soil management systems which could improve cotton yields while concurrently ameliorating and maintaining soil structure and fertility. An outcome of this research was the identification of cotton–winter crop sequences sown in a 1 : 1 rotation as being able to sustain lint yields while at the same time maintaining soil physical quality and minimising fertility decline. Consequently, today, a large proportion (~75%) of Australian cotton is grown in rotation with winter cereals such as wheat (Triticum aestivum L.), or legumes such as faba bean (Vicia faba L.). A second phase of research on cotton rotations in Vertosols was initiated during the early 1990s with the main objective of identifying sustainable cotton–rotation crop sequences; viz. crop sequences which maintained and improved soil quality, minimised disease incidence, facilitated soil organic carbon sequestration, and maximised economic returns and cotton water use efficiency in the major commercial cotton-growing regions of Australia. The objective of this review was to summarise the key findings of both these phases of Australian research with respect to soil quality and profitability, and identify future areas of for research. Wheat rotation crops under irrigated and dryland conditions and in a range of climates where cotton is grown can improve soil quality indicators such as subsoil structure, salinity, and sodicity under irrigated and dryland conditions, while leguminous crops can increase available nitrogen by fixing atmospheric nitrogen, and by reducing N volatilisation and leaching losses. Soil organic carbon in most locations has decreased with time, although the rate of decrease may be reduced by sowing crop sequences that return about 2 kg/m2.crop cycle of residues to the soil, minimising tillage and optimising N inputs. Although the beneficial effects of soil biodiversity on quality of soil are claimed to be many, except for a few studies on soil macrofauna such as ants, conclusive field-based evidence to demonstrate this has not been forthcoming with respect to cotton rotations. In general, lowest average lint yields per hectare were with cotton monoculture. The cotton–wheat systems generally returned higher average gross margins/ML irrigation water than cotton monoculture and other rotation crops. This indicates that where irrigation water, rather than land, is the limiting resource, cotton–wheat systems would be more profitable. Recently, the addition of vetch (Vicia villosa Roth.) to the cotton–wheat system has further improved average cotton yields and profitability. Profitability of cotton–wheat sequences varies with the relative price of cotton to wheat. In comparison with cotton monoculture, cotton–rotation crop sequences may be more resilient to price increases in fuel and fertiliser due to lower overall input costs. The profitability of cotton–rotation crop sequences such as cotton–wheat, where cotton is not sown in the same field every year, is more resilient to fluctuations in the price of cotton lint, fuel and nitrogen fertiliser. This review identified several issues with respect to cotton–rotation crop sequences where knowledge is lacking or very limited. These are: research into ‘new’ crop rotations; comparative soil quality effects of managing rotation crop stubble; machinery attachments for managing rotation crop stubble in situ in permanent bed systems; the minimum amount of crop stubble which needs to be returned per cropping cycle to increase SOC levels from present values; the relative efficacy of C3 and C4 rotation crops in relation to carbon sequestration; the interactions between soil biodiversity and soil physical and chemical quality indicators, and cotton yields; and the effects of sowing rotation crops after cotton on farm and cotton industry economic indicators such as the economic incentives for adopting new cotton rotations, farm level impacts of research and extension investments, and industry- and community/catchment-wide economic modelling of the impact of cotton research and extension activities.

Soil Research ◽  
2020 ◽  
Vol 58 (5) ◽  
pp. 421
Author(s):  
M. G. Bacher ◽  
O. Schmidt ◽  
G. Bondi ◽  
O. Fenton

Soil quality determines the ability of soil to deliver ecosystem services and can be inferred from physical, biological and chemical indicators either in isolation or in combination. Earthworms are good soil-quality indicators that contribute to both chemical and physical quality by maintaining soil structure and cycling nutrients. The presence of dung pats can increase earthworm abundance locally and consequently the network of pores that they create through their burrowing activity. Inevitably this affects soil structure and consequently will have a spatially distributed effect on soil physical quality (SPQ). The aim of this field study was to examine the relationship between SPQ and earthworm abundance under dung and non-dung pat areas from deposition to decay and beyond. The present spatial and temporal study compared SPQ indicator (integral air-water energy, AWr) results with earthworm abundance across control and simulated dung pat treatments. Results showed that existing earthworm populations in this grassland were already very large (>500 individuals m–2) and SPQ (AWr) remained in the ‘very good’ category throughout the experiment. Earthworm abundance under dung pats and SPQ exhibited a significant (P = 0.05) temporal trend. In general, the time of decay of the dung pats played a role in increasing earthworm abundance and SPQ. Earthworm abundance and macropore density data formed a similar, ‘hump’-shaped dynamic over time. However, when an earthworm abundance threshold was exceeded (equivalent to about >3000 individuals m–2), the increase of SPQ under dung was attenuated and did increase further only under the control sward with high earthworm abundance. After 11 weeks, for both treatments, AWr under dung pats was capped at 0.83% and AWr under control sward peaked at 1.34%. Future work should focus on (a) further exploration of the threshold where earthworm abundance becomes detrimental for SPQ and (b) using the AWr SPQ indicator within an actual grazed trial which incorporates a gradient of soil degradation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


1999 ◽  
Vol 39 (6) ◽  
pp. 743 ◽  
Author(s):  
J. L. Cooper

Summary. Cotton growers in the Macquarie, Namoi and Gwydir Valleys of New South Wales were surveyed in 1992 to determine what crops are grown in rotation with cotton, how frequently rotation crops are used, and what influences the grower’s choice of rotation system. A total of 155 properties were surveyed, covering 100, 49 and 58% of irrigated cotton produced in the Macquarie, Namoi and Gwydir Valleys, respectively. Although a large part of the 1992–93 cotton crop (61% by area) did not follow a rotation crop, there was widespread interest in rotations and 70% of properties had used rotations. Wheat was by far the most widely grown rotation crop, but there was considerable interest in other crops, especially legumes. The perceived benefits from rotation crops reported by most growers were better soil structure, less disease in following cotton, and more soil organic matter. However, when asked why they preferred certain rotation crops, these factors did not rate highly with growers. Crops that were easy to grow and gave the best financial returns possessed the main features sought in a rotation crop. The greatest problem in growing rotation crops was a lack of irrigation water. It is not surprising that this problem ranked highly because when the survey was conducted, the Namoi and Gwydir Valleys had water allocations of 15 and 0%, respectively. Not having suitable equipment to sow rotation crops was also a problem for 17% of growers, but 10% encountered no problems. The survey also investigated the use of permanent beds and retained hills. These practices have benefits for soil structure, and are almost essential for rotation crops which need to be sown as soon as the cotton is harvested. Over 80% of growers using rotations had adopted some form of permanent beds or retained hills. The benefit which ranked highest was a reduction in costs, followed by less soil compaction. Some growers (44%) who used permanent beds or retained hills had no problems, but handling the trash and keeping the rows straight were of concern to others.


2014 ◽  
Vol 38 (2) ◽  
pp. 444-453 ◽  
Author(s):  
Thalita Campos Oliveira ◽  
Laura Fernanda Simões da Silva ◽  
Miguel Cooper

The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere) and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt), and water storage capacity (FC/Pt) of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil) under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035). The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5813
Author(s):  
Aneta Kowalska ◽  
Anna Grobelak ◽  
Åsgeir R. Almås ◽  
Bal Ram Singh

High anthropogenic activities are constantly causing increased soil degradation and thus soil health and safety are becoming an important issue. The soil quality is deteriorating at an alarming rate in the neighborhood of smelters as a result of heavy metal deposition. Organic biowastes, also produced through anthropogenic activities, provide some solutions for remediation and management of degraded soils through their use as a substrate. Biowastes, due to their high content of organic compounds, have the potential to improve soil quality, plant productivity, and microbial activity contributing to higher humus production. Biowaste use also leads to the immobilization and stabilization of heavy metals, carbon sequestration, and release of macro and micronutrients. Increased carbon sequestration through biowaste use helps us in mitigating climate change and global warming. Soil amendment by biowaste increases soil activity and plant productivity caused by stimulation in shoot and root length, biomass production, grain yield, chlorophyll content, and decrease in oxidative stress. However, biowaste application to soils is a debatable issue due to their possible negative effect of high heavy metal concentration and risks of their accumulation in soils. Therefore, regulations for the use of biowastes as fertilizer or soil amendment must be improved and strictly employed to avoid environmental risks and the entry of potentially toxic elements into the food chain. In this review, we summarize the current knowledge on the effects of biowastes on soil remediation, plant productivity, and soil organic carbon sequestration.


2014 ◽  
Vol 38 (1) ◽  
pp. 278-287 ◽  
Author(s):  
Gabriel Pinto Guimarães ◽  
Eduardo de Sá Mendonça ◽  
Renato Ribeiro Passos ◽  
Felipe Vaz Andrade

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.


Soil Research ◽  
2015 ◽  
Vol 53 (3) ◽  
pp. 274 ◽  
Author(s):  
P. A. Swanepoel ◽  
C. C. du Preez ◽  
P. R. Botha ◽  
H. A. Snyman ◽  
J. Habig

Soil quality of pastures changes through time because of management practices. Excessive soil disturbance usually leads to the decline in soil quality, and this has resulted in concerns about kikuyu (Pennisetum clandestinum)–ryegrass (Lolium spp.) pasture systems in the southern Cape region of South Africa. This study aimed to understand the effects of tillage on soil quality. The soil management assessment framework (SMAF) and the locally developed soil quality index for pastures (SQIP) were used to assess five tillage systems and were evaluated at a scale inclusive of variation in topography, pedogenic characteristics and local anthropogenic influences. Along with assessment of overall soil quality, the quality of the physical, chemical and biological components of soil were considered individually. Soil physical quality was largely a function of inherent pedogenic characteristics but tillage affected physical quality adversely. Elevated levels of certain nutrients may be warning signs to soil chemical degradation; however, tillage practice did not affect soil chemical quality. Soil disturbance and the use of herbicides to establish annual pastures has lowered soil biological quality. The SQIP was a more suitable tool than SMAF for assessing soil quality of high-input, dairy-pasture systems. SQIP could facilitate adaptive management by land managers, environmentalists, extension officers and policy makers to assess soil quality and enhance understanding of processes affecting soil quality.


2017 ◽  
Vol 173 ◽  
pp. 75-82 ◽  
Author(s):  
Rachel M.L. Guimarães ◽  
Afrânio F. Neves Junior ◽  
Wellington G. Silva ◽  
Craig D. Rogers ◽  
Bruce C. Ball ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1279
Author(s):  
Anna Gałązka ◽  
Jacek Niedźwiecki ◽  
Jarosław Grządziel ◽  
Karolina Gawryjołek

The aim of the study was to evaluate the changes in glomalin-related soil proteins (GRSP) content, microbial diversity and soil physical quality depending on the type of soil measures of soil improvement and changes in soil health. The study was based on a 100-year stationary field microplot experiment where the soil profiles were collected with preserving the natural soil horizons. The microplot experiment was carried out on eight different soil types: Brunic Arenosol (Dystric I), Rendzic Leptosol, Fluvic Cambisol, Haplic Cambisol (Eutric), Gleyic Phaeozem, Brunic Arenosol (Dystric II), Haplic Cambisol (Eutric II) and Haplic Cambisol (Dystric). These soils are the most common types of agricultural soils in Poland. Relatively significant correlations with the soil quality, physical parameters and the glomalin-related soil proteins have been found. The study determined the total GRSP (T-GRSP) and easily extractable GRSP (EE-GRSP) levels in soils as well as the soil physical quality index and soil’s microbial biodiversity. The GRSP depended on the type of soil and correlated with S-Index and also was responsible for the unique chemical and physical properties of soils. Soils characterized by the highest T-GRSP content belonged to the group of very good and good soil physical quality characterized also by high biological activity, for which there were strong correlations with such parameters as dehydrogenase activity (DHA), microbial biomass content (MBC), microbial nitrogen content (MBN) and total bacteria number (B). The highest T-GRSP content and higher microbial diversity were found in Gleyic Phaeozem, Rendzic Leptosol and Fluvic Cambisol. The T-GRSP and EE-GRSP content were additionally correlated with the number of AMF spores. Very poor and poor soil physical quality according to S-Index characterized Brunic Arenosol (Dystric I) and Haplic Cambisol (Dystric). This research indicates that a specific edaphone of soil microorganisms and GRSP content may be of great importance when assessing a soil’s quality and improvements in soil health. The abundance of glomalin-producing fungi significantly affects the quality of the soil. This effect is particularly important for agricultural soils are threatened by ongoing land degradation.


2019 ◽  
Vol 99 (2) ◽  
pp. 146-160 ◽  
Author(s):  
Kris G. Guenette ◽  
Guillermo Hernandez-Ramirez ◽  
Peter Gamache ◽  
Roger Andreiuk ◽  
Lewis Fausak

Soil samples were collected from commercial agriculture sites within western Canada that were subjected to compaction from farm equipment in both conventional (imposed) traffic and controlled traffic regimes. Soil characteristics such as bulk density, pore volume fractions, and unsaturated hydraulic conductivity were compared with soil physical quality parameters, such as S-index and mass fractal aggregation between trafficked and untrafficked field areas. Our results showed that untrafficked soil characteristics displayed substantial improvements over those exposed to equipment compaction. Untrafficked soils in the controlled traffic regime exhibited total porosity improvements up to 15% in more than half of the study sites. In addition, spatial reductions of equipment compaction increased the volume of soil pore diameters associated with preferential water transmission from 40% to 180%. Changes in these soil characteristics within untrafficked soils correlated well with enhancements in the soil structure metrics, as improvements to the S-index were coupled with evidence of hierarchical aggregation. Irrespective of the positive changes to soil structure, significant increases in crop yield were rarely observed in favor of a controlled traffic regime. Our results suggest that the integration of controlled traffic farming into management systems may take several years for the benefits to soil physical quality to translate into observable improvements in crop yield.


Sign in / Sign up

Export Citation Format

Share Document