scholarly journals Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(II) - Study on Correlation Analysis Method of Radiation Data -

2013 ◽  
Vol 33 (4) ◽  
pp. 101-110 ◽  
Author(s):  
Dong-Ho Choi ◽  
Bu-Yong Lee ◽  
Ho-Yeop Oh
2021 ◽  
Vol 8 ◽  
Author(s):  
G. Djoumna ◽  
S. H. Mernild ◽  
D. M. Holland

The surface radiation budget is an essential component of the total energy exchange between the atmosphere and the Earth’s surface. Measurements of radiative fluxes near/on ice surfaces are sparse in the polar regions, including on the Greenland Ice Sheet (GrIS), and the effects of cloud on radiative fluxes are still poorly studied. In this work, we assess the impacts of cloud on radiative fluxes using two metrics: the longwave-equivalent cloudiness, derived from long-wave radiation measurements, and the cloud transmittance factor, obtained from short-wave radiation data. The metrics are applied to radiation data from two automatic weather stations located over the bare ground near the ice front of Helheim (HG, 66.3290°N, 38.1460°W) and Jakobshavn Isbræ(JI, 69.2220°N, 49.8150°W) on the GrIS. Comparisons of meteorological parameters, surface radiation fluxes, and cloud metrics show significant differences between the two sites. The cloud transmittance factor is higher at HG than at JI, and the incoming short-wave radiation in the summer at HG is about 50.0 W m−2 larger than at JI. Cloud metrics derived at the two sites reveal partly cloudy conditions were frequent (42 and 65% of the period at HG and JI) with a high dependency on the wind direction. The total cloud radiative effect (CREnet) generally increases during melt season at the two stations due to long-wave CRE enhancement by cloud fraction. CREnet decreases from May to June and increases afterward, due to the strengthened short-wave CRE. The annually averaged CREnet were 3.0 ± 7.4 W m−2 and 1.9±15.1 W m−2 at JI and HG. CREnet estimated from AWS indicates that clouds cool the JI and HG during melt season at different rates.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Britta Jänicke ◽  
Fred Meier ◽  
Marie-Therese Hoelscher ◽  
Dieter Scherer

The evaluation of the effectiveness of countermeasures for a reduction of urban heat stress, such as façade greening, is challenging due to lacking transferability of results from one location to another. Furthermore, complex variables such as the mean radiant temperature(Tmrt)are necessary to assess outdoor human bioclimate. We observedTmrtin front of a building façade in Berlin, Germany, which is half-greened while the other part is bare.Tmrtwas reduced (mean 2 K) in front of the greened compared to the bare façade. To overcome observational shortcomings, we applied the microscale models ENVI-met, RayMan, and SOLWEIG. We evaluated these models based on observations. Our results show thatTmrt(MD = −1.93 K) and downward short-wave radiation (MD = 14.39 W/m2) were sufficiently simulated in contrast to upward short-wave and long-wave radiation. Finally, we compare the simulated reduction ofTmrtwith the observed one in front of the façade greening, showing that the models were not able to simulate the effects of façade greening with the applied settings. Our results reveal that façade greening contributes only slightly to a reduction of heat stress in front of building façades.


1971 ◽  
Vol 10 (58) ◽  
pp. 101-104 ◽  
Author(s):  
M.P. Langleben

AbstractTwo Kipp hemispherical radiometers mounted back to back and suspended by an 18 m cable from a helicopter flying at an altitude of about 90 m were used to make measurements of incident and reflected short-wave radiation. The helicopter was brought to a hovering position at the instant of measurement to ensure that the radiometers were in the proper attitude and a photograph of the ice cover was taken at the same time. The observations were made in 1969 during 16 flights out of Tuktoyaktuk, Northwest Territories (lat. 69° 26’N., long. 133° 02’W.) over the fast ice extending 80 km north of Tuktoyaktuk. Values of albedo of the ice cover were found to decrease during the melting period according to the equation A = 0.59 —0.32P where P is the degree of puddling of the surface.


Sign in / Sign up

Export Citation Format

Share Document