scholarly journals PACLITAXEL INDUCED LIPID PEROXIDATION: ROLE OF WATER EXTRACT OF SPIRULINA PLATENSIS

2016 ◽  
Vol 5 (1) ◽  
pp. 38-41
Author(s):  
Supratim Ray ◽  
Sarbani Dey Ray
2020 ◽  
Vol 48 (4) ◽  
pp. 1941-1956
Author(s):  
Hossam S. EL-BELTAGI ◽  
Faten DHAWI ◽  
Ihab S. ASHOUSH ◽  
Khaled RAMADAN

Due to the excessive impact of synthetic drugs, unravelling and employing safe, natural alternatives are now needed to resolve a number of diseases. In this research, we have evaluated hepatoprotective and antioxidant activities of Spirulina platensis and pomegranate juice in rats against hepatotoxicity induced by carbon tetrachloride (CCl4). Spirulina crude carotenoid extract was screened by UPLC-MS / MS. Activities of liver marker enzymes; measured aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and determined lipid peroxidation and antioxidant status as reduced glutathione (GSH) in liver homogenate. The infusion of CCl4 (2 ml/kg b.wt) greatly increases levels of liver marker enzymes and lipid peroxidation, resulting in depletion of antioxidants. Treatment of Spirulina platensis (Sp), pomegranate juice (Pj)or mixture (PJSP) of Spirulina water extract 10% and pomegranate juice 90% (1 ml/100 g b.wt) to CCl4-disrupted rats resulted in decreased activity of liver marker enzymes, lipid peroxidation with increased antioxidant status. Chromatographic separation showed that ß-carotene is the predominant carotenoid extract. This carotenoid extract was tested for colon carcinoma (HCT-116), liver carcinoma (HepG2) and intestinal carcinoma cell lines (CACO) LC50 for 21.8, 14 and 11.3 ug / ml, respectively. Total phenolic phytochemicals, total carotenoids and total flavonoids were also measured in Spirulina. Our study clearly demonstrates that Spirulina platensis and pomegranate juice had hepatoprotective effect on CCl4-caused hepatotoxicity in rats through its antioxidant activity.


2015 ◽  
Vol 4 (3) ◽  
pp. 205 ◽  
Author(s):  
Shikha Saxena ◽  
KV Thimmaraju ◽  
PremC Srivastava ◽  
AyazK Mallick ◽  
Biswajit Das ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Helena Beatriz Ferreira ◽  
Tânia Melo ◽  
Artur Paiva ◽  
Maria do Rosário Domingues

Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document