Oil in and under Ice Detection using Nuclear Magnetic Resonance

2017 ◽  
Vol 2017 (1) ◽  
pp. 1877-1889
Author(s):  
David Palandro ◽  
Tim Nedwed ◽  
Steve Altobelli ◽  
Eiichi Fukushima ◽  
Mark Conradi ◽  
...  

ABSTRACT (2017-387) The application of existing remote sensing sensors and technologies for the detection of oil in and under ice is an ongoing and active research area. Currently, the suite of sensors that have and are being tested include acoustic, radar, optical and fluorosensors. Another technology being tested is Nuclear Magnetic Resonance (NMR) in the earth’s magnetic field. NMR to detect oil in and under ice has undergone extensive testing since 2006 and results to date have been promising. Field tests performed using a prototype 1 × 1 m flat transmitting/receiving antenna coil have differentiated seawater and Crisco® oil, a crude-oil surrogate. Research has been focused on scaling-up the 1 m2 prototype to increase the signal-to-noise ratio (SNR) and allow the sensor to detect oil beneath ice that is up to 1 m thick. The coil currently being tested has a diameter of 6 m in a modified figure-8 pattern. This coil was being tested at Cold Regions Research and Engineering Laboratory (CRREL) in Hanover, New Hampshire, USA. The final phase of feasibility testing was completed in late 2016 with the use of a ruggedized NMR system flown under a helicopter over a pond. The ruggedized NMR system was able to detect a 1.0 cm thick layer of a crude oil surrogate under ~ 110 cm of simulated ice.

Author(s):  
В.В. Давыдов ◽  
Н.С. Мязин ◽  
В.И. Дудкин ◽  
Р.В. Давыдов

The features of the state investigation of a flowing liquid by nuclear magnetic resonance was defined. The methodology for the state investigation of the flowing medium by changing the values of the longitudinal T1 and transverse T2 relaxation times is justified. For the parameters of the registration system of the signal of nuclear magnetic resonance and magnetic fields are established relations between them. The implementation of these ratios allows to obtain a signal to noise ratio of more than 5 for carrying out measurements of T1 and T2 values in real time with an error not exceeding 1%. The results of experimental research are presented.


1990 ◽  
Vol 258 (4) ◽  
pp. F1125-F1131 ◽  
Author(s):  
S. D. Wolff ◽  
J. Eng ◽  
B. A. Berkowitz ◽  
S. James ◽  
R. S. Balaban

The mechanism by which the mammalian kidney generates a concentration gradient of sodium from cortex to papilla is still not entirely understood. Studies of how the kidney as an organ generates this gradient have been hampered by the lack of a noninvasive method for monitoring the intrarenal sodium distribution. Herein, we demonstrate the value of sodium-23 nuclear magnetic resonance (23Na-NMR) imaging to nondestructively assess the intrarenal sodium distribution. 23Na-NMR images were obtained from a surgically exposed kidney preparation that showed the two-dimensional distribution of sodium in the rabbit kidney. In the antidiuretic kidney this gradient resulted in papillary sodium concentrations that were approximately threefold higher than cortical values. Serial 23Na-NMR images obtained during saline infusion demonstrated the kinetics by which the sodium gradient increases with diuresis. The half-time for 23Na washout of the medulla of the kidney was approximately 6 min with this protocol. In addition, a three-dimensional data set of the sodium distribution of the kidney was obtained with voxel dimensions of 1.5 mm3 by use of a three-dimensional 23Na-NMR imaging technique. Without surgical exposure, 23Na-NMR images of the rabbit kidney were collected under completely noninvasive conditions by use of a surface coil. The 23Na-NMR signal from the kidney was easily detected; however, to obtain images of comparable signal-to-noise ratio to the surgically exposed kidney, spatial and temporal resolution were significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document