scholarly journals Analysis of Effect of an Additional Edge on Eigenvector Centrality of Graph

2016 ◽  
Vol 21 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Chi-Geun Han ◽  
Sang-Hoon Lee
Author(s):  
Ginestra Bianconi

Defining the centrality of nodes and layers in multilayer networks is of fundamental importance for a variety of applications from sociology to biology and finance. This chapter presents the state-of-the-art centrality measures able to characterize the centrality of nodes, the influences of layers or the centrality of replica nodes in multilayer and multiplex networks. These centrality measures include modifications of the eigenvector centrality, Katz centrality, PageRank centrality and Communicability to the multilayer network scenario. The chapter provides a comprehensive description of the research of the field and discusses the main advantages and limitations of the different definitions, allowing the readers that wish to apply these techniques to choose the most suitable definition for his or her case study.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruaridh A. Clark ◽  
Malcolm Macdonald

AbstractContact networks provide insights on disease spread due to the duration of close proximity interactions. For systems governed by consensus dynamics, network structure is key to optimising the spread of information. For disease spread over contact networks, the structure would be expected to be similarly influential. However, metrics that are essentially agnostic to the network’s structure, such as weighted degree (strength) centrality and its variants, perform near-optimally in selecting effective spreaders. These degree-based metrics outperform eigenvector centrality, despite disease spread over a network being a random walk process. This paper improves eigenvector-based spreader selection by introducing the non-linear relationship between contact time and the probability of disease transmission into the assessment of network dynamics. This approximation of disease spread dynamics is achieved by altering the Laplacian matrix, which in turn highlights why nodes with a high degree are such influential disease spreaders. From this approach, a trichotomy emerges on the definition of an effective spreader where, for susceptible-infected simulations, eigenvector-based selections can either optimise the initial rate of infection, the average rate of infection, or produce the fastest time to full infection of the network. Simulated and real-world human contact networks are examined, with insights also drawn on the effective adaptation of ant colony contact networks to reduce pathogen spread and protect the queen ant.


Author(s):  
Gretel Liz De la Peña Sarracén ◽  
Paolo Rosso

AbstractThe proliferation of harmful content on social media affects a large part of the user community. Therefore, several approaches have emerged to control this phenomenon automatically. However, this is still a quite challenging task. In this paper, we explore the offensive language as a particular case of harmful content and focus our study in the analysis of keywords in available datasets composed of offensive tweets. Thus, we aim to identify relevant words in those datasets and analyze how they can affect model learning. For keyword extraction, we propose an unsupervised hybrid approach which combines the multi-head self-attention of BERT and a reasoning on a word graph. The attention mechanism allows to capture relationships among words in a context, while a language model is learned. Then, the relationships are used to generate a graph from what we identify the most relevant words by using the eigenvector centrality. Experiments were performed by means of two mechanisms. On the one hand, we used an information retrieval system to evaluate the impact of the keywords in recovering offensive tweets from a dataset. On the other hand, we evaluated a keyword-based model for offensive language detection. Results highlight some points to consider when training models with available datasets.


2021 ◽  
pp. 155005942110262
Author(s):  
Bo Chen

The abnormal cortices of autism spectrum disorder (ASD) brains are uncertain. However, the pathological alterations of ASD brains are distributed throughout interconnected cortical systems. Functional connections (FCs) methodology identifies cooperation and separation characteristics of information process in macroscopic cortical activity patterns under the context of network neuroscience. Embracing the graph theory concepts, this paper introduces eigenvector centrality index (EC score) ground on the FCs, and further develops a new framework for researching the dysfunctional cortex of ASD in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in EC-scores of 26 ASD boys and 28 matched healthy controls (HCs). For whole brain regional EC scores of ASD boys, orbitofrontal superior medial cortex, insula R, posterior cingulate gyrus L, and cerebellum 9 L are endowed with different EC scores significantly. In the brain subsystems level, EC scores of DMN, prefrontal lobe, and cerebellum are aberrant in the ASD boys. Generally, the EC scores display widespread distribution of diseased regions in ASD brains. Meanwhile, the discovered regions and subsystems, such as MPFC, AMYG, INS, prefrontal lobe, and DMN, are engaged in social processing. Meanwhile, the CBCL externalizing problem scores are associated with EC scores.


2021 ◽  
Vol 13 (4) ◽  
pp. 1932 ◽  
Author(s):  
Reza Kiani Mavi ◽  
Denise Gengatharen ◽  
Neda Kiani Mavi ◽  
Richard Hughes ◽  
Alistair Campbell ◽  
...  

This paper aims to identify the major research concepts studied in the literature of sustainability in construction projects. Two bibliometric analysis tools—(a) BibExcel and (b) Gephi, were used to analyze the bibliometrics indices of papers and visualize their interrelations as a network, respectively. Therefore, a research focus parallelship network (RFPN) analysis and keyword co-occurrence network (KCON) analysis were performed to uncover the primary research themes. The RFPN analysis clustered the studies into three major categories of evaluating sustainability, project management for sustainability, and drivers of sustainable construction. The KCON analysis revealed that while each paper had a different focus, the underlying concept of all clusters was sustainability, construction, and project management. We found that while ‘sustainability’ was the leading keyword in the first cluster, i.e., evaluating sustainability, it was the second top keyword with the eigenvector centrality of over 0.94 in the other two clusters. We also found that the concept of sustainability should be included in construction projects from the early stages of design and feasibility studies and must be monitored throughout the project life. This review showed that previous researchers used a variety of statistical and mathematical techniques such as structural equation modelling and fuzzy decision-making methods to study sustainability in construction projects. Using an integrated approach to identifying the research gaps in this area, this paper provides researchers with insights on how to frame new research to study sustainability in construction projects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuo Nakai ◽  
Hiroki Nishibayashi ◽  
Tomohiro Donishi ◽  
Masaki Terada ◽  
Naoyuki Nakao ◽  
...  

AbstractWe explored regional functional connectivity alterations in intractable focal epilepsy brains using resting-state functional MRI. Distributions of the network parameters (corresponding to degree and eigenvector centrality) measured at each brain region for all 25 patients were significantly different from age- and sex-matched control data that were estimated by a healthy control dataset (n = 582, 18–84 years old). The number of abnormal regions whose parameters exceeded the mean + 2 SD of age- and sex-matched data for each patient were associated with various clinical parameters such as the duration of illness and seizure severity. Furthermore, abnormal regions for each patient tended to have functional connections with each other (mean ± SD = 58.6 ± 20.2%), the magnitude of which was negatively related to the quality of life. The abnormal regions distributed within the default mode network with significantly higher probability (p < 0.05) in 7 of 25 patients. We consider that the detection of abnormal regions by functional connectivity analysis using a large number of control datasets is useful for the numerical assessment of each patient’s clinical conditions, although further study is necessary to elucidate etiology-specific abnormalities.


2018 ◽  
Vol 7 (4) ◽  
pp. 515-528 ◽  
Author(s):  
Desmond J Higham

Abstract The friendship paradox states that, on average, our friends have more friends than we do. In network terms, the average degree over the nodes can never exceed the average degree over the neighbours of nodes. This effect, which is a classic example of sampling bias, has attracted much attention in the social science and network science literature, with variations and extensions of the paradox being defined, tested and interpreted. Here, we show that a version of the paradox holds rigorously for eigenvector centrality: on average, our friends are more important than us. We then consider general matrix-function centrality, including Katz centrality, and give sufficient conditions for the paradox to hold. We also discuss which results can be generalized to the cases of directed and weighted edges. In this way, we add theoretical support for a field that has largely been evolving through empirical testing.


Sign in / Sign up

Export Citation Format

Share Document