scholarly journals A Motion Response Analysis of a Floating Body of Barge-type in Stokes Waves

2017 ◽  
Vol 21 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Seung-Chul Lee ◽  
Ja-Sam Goo
2020 ◽  
Vol 24 (6) ◽  
pp. 12-18
Author(s):  
Seung-Chul Lee ◽  
Young-Rok Ha ◽  
Ja-Sam Goo

Author(s):  
Hajime Kihara ◽  
Motoki Yoshida ◽  
Hidetsugu Iwashita ◽  
Takeshi Kinoshita

Author(s):  
Hiroaki ETO ◽  
Hitomi KASHIMA ◽  
Ryo SEKIGUCHI ◽  
Tomoki IKOMA ◽  
Yasuhiro AIDA ◽  
...  

Author(s):  
Hiroaki Eto ◽  
Yoh Shikita ◽  
Tomoki Ikoma ◽  
Koichi Masuda ◽  
Hiroaki Kihara

This paper describes the motion characteristics and cargo handling efficiency of the Large-Scale Floating Coal Transshipment Station (LFTS). Indonesia is a main country supplying coal in the Asia-Pacific region, it is important to ensure a stable coal supply to Japan. Because the topography of the seabed near East Kalimantan Island, Indonesia’s main coal production area, is shallow, it is difficult for bulk carriers to reach the coast. Therefore, LFTS is proposed, which will be used as a relay base between coal-barging barges from land and bulk carriers offshore. By installing LFTS, improvement of coal transport efficiency is expected. In considering feasibility of the LFTS system, it is important to know the cargo handling operation rate in the target area, LFTS can load 500,000 tons of coal and the draft will fluctuate greatly depending on the loading condition of coal. Therefore, when the draft is shallow, the freeboard becomes large and resonates with long-term component of the wind load and when the draft is deep, the wave force and fluid force including the slowly varying wave drift force affect the fluctuation. Also, LFTS and bulk carrier are large-scale structures, the fluid forces acting on both affect each other, so the influence of hydrodynamic mutual interference between two floating bodies cannot be ignored. In this study, fluid analysis in consideration of the hydrodynamic mutual interference of LFTS system is conducted. And, response analysis of LFTS and a bulk carrier in irregular wave which considered compound external forces such as wave load and slow varying wave drift force, wind load, tidal current was performed. As a result, it was confirmed that the motion response of LFTS was not upset because LFTS was large. Therefore, without considering the motion response of the LFTS, the cargo handling efficiency is calculated from the response analysis results of the bulk carrier and the oceanic condition of the setting sea area. As a result, the cargo handling efficiency is satisfied in the state where bulk carrier is installed leeward of LFTS, and it was confirmed that the LFTS system could be operated satisfactorily if the installation was appropriate.


Author(s):  
Tomoaki Utsunomiya ◽  
Iku Sato ◽  
Koji Tanaka

Abstract When using synthetic fiber rope as a mooring line of a floating body such as floating offshore wind turbine (FOWT), it is necessary to carry out characteristic test and to grasp well about strength, stiffness, durability against monotonic and cyclic loadings. In this research, we have made characteristics test of polyester rope based on ISO. Next, based on the obtained characteristic values (mass, stiffness, strength, etc.), the dynamic response analysis of the floating body-mooring system was carried out and the mooring design was carried out. It was actually operated as a floating body mooring line for about 1 year. During the operation period, no abnormality was found, nor appearance damage occurred. After completion of operation for 1 year, the polyester rope was collected and residual strength test was carried out. As a result, no serious deterioration situation such as infiltration of marine organisms or fracture of the strands due to wear between fibers was observed at all. On the other hand, with respect to durability, it was found that the strength reduction was 2.9% from the initial state with respect to the breaking strength.


2019 ◽  
Vol 1168 ◽  
pp. 022008
Author(s):  
Kong-de He ◽  
Zhi-chao Chen ◽  
Xu-guang Xie ◽  
Zi-fan Fang ◽  
Xue-hui He

2012 ◽  
Vol 608-609 ◽  
pp. 649-652
Author(s):  
Fa Suo Yan ◽  
Hong Wei Wang ◽  
Jun Zhang ◽  
Da Gang Zhang

A numerical code, known as COUPLE, which has been developed to perform hydrodynamic analysis of floating body with a mooring system, is extended to collaborate with FAST to evaluate the interactions between wind turbine and its floating base. FAST is developed by National Renewable Energy Lab (NREL) for aeroelastic simulation of wind turbines. A dynamic response analysis of a spar type floating wind turbine system is carried out by the method. Two types of simulation of wind load are used in the analysis. One type is a constant steady force and the other is a six-component dynamic load from a turbulent wind model. Numerical results of related platform motions under random sea conditions are presented in time and frequency domain. Comparison of results is performed to explain the difference of two analyses. The conclusions derived in this study may provide reference for the design of offshore floating wind turbines.


Sign in / Sign up

Export Citation Format

Share Document