Probabilistic site response analysis for nuclear facilities considering variability of soil properties and its effects on uniform hazard response spectra and ground motion response spectra

2021 ◽  
Vol 150 ◽  
pp. 106953
Author(s):  
Hieu Van Nguyen ◽  
Jin Ho Lee
2021 ◽  
Vol 13 (1) ◽  
pp. 1273-1289
Author(s):  
Qifeng Jiang ◽  
Mianshui Rong ◽  
Wei Wei ◽  
Bin Zhang ◽  
Jixin Wang

Abstract The thick soft superficial layers of the seabed greatly influence ground motion generally. It is worth studying how to find out the influence of these soft layers on ground motion parameters and determine reasonable seismic fortification parameters for ocean engineering. Numerical experiments of site response analysis are designed using two offshore engineering sites in this study. First, the borehole profiles are selected and stripped layer by layer to generate new profiles. Second, 108 acceleration time histories are synthesized which basically represent the diversity of input motions’ amplitude and frequency. Third, a method that can automatically calculate characteristic periods and normalize response spectra is created to improve calculation efficiency. Fourth, peak accelerations, response spectra, and characteristic periods at different depths of the profiles with different stripping depths are calculated. The results show that the thick soft superficial layers can significantly decrease peak ground accelerations and increase characteristic periods, resulting in serious “low-fat” response spectra. The situation can be greatly improved by stripping off the soft superficial layers. After stripping off the thick soft superficial silt layers, if stripping is continued further, the variation in the superficial amplification ratios of peak accelerations and superficial characteristic periods will no longer be drastic, and the superficial amplification ratios and characteristic periods both tend to be mostly the same. The relative deviation of the amplification ratio of peak ground acceleration between a profile stripped and that without stripping can be 143%, and it can be 83% for characteristic period. It is advisable to strip off thick soft superficial layers to perform site response analysis, and the shear force at the bottom of the silt should be considered in engineering based on local seismic activity level, and the silt’s and the structure’s physical parameters.


2012 ◽  
Vol 43 ◽  
pp. 202-217 ◽  
Author(s):  
Camilo Phillips ◽  
Albert R. Kottke ◽  
Youssef M.A. Hashash ◽  
Ellen M. Rathje

2020 ◽  
Vol 12 (13) ◽  
pp. 5273 ◽  
Author(s):  
Karma Tempa ◽  
Raju Sarkar ◽  
Abhirup Dikshit ◽  
Biswajeet Pradhan ◽  
Armando Lucio Simonelli ◽  
...  

Earthquakes, when it comes to natural calamities, are characteristically devastating and pose serious threats to buildings in urban areas. Out of multiple seismic regions in the Himalayas, Bhutan Himalaya is one that reigns prominent. Bhutan has seen several moderate-sized earthquakes in the past century and various recent works show that a major earthquake like the 2015 Nepal earthquake is impending. The southwestern city of Bhutan, Phuentsholing is one of the most populated regions in the country and the present study aims to explore the area using geophysical methods (Multispectral Analysis of Surface Waves (MASW)) for understanding possibilities pertaining to infrastructural development. The work involved a geophysical study on eight different sites in the study region which fall under the local area plan of Phuentsholing City. The geophysical study helps to discern shear wave velocity which indicates the soil profile of a region along with possible seismic hazard during an earthquake event, essential for understanding the withstanding power of the infrastructure foundation. The acquired shear wave velocity by MASW indicates visco-elastic soil profile down to a depth of 22.2 m, and it ranged from 350 to 600 m/s. A site response analysis to understand the correlation of bedrock rigidness to the corresponding depth was conducted using EERA (Equivalent-linear Earthquake Site Response Analysis) software. The amplification factors are presented for each site and maximum amplification factors are highlighted. These results have led to a clear indication of how the bedrock characteristics influence the surface ground motion parameters for the corresponding structure period. The results infer that the future constructional activity in the city should not be limited to two- to five-story buildings as per present practice. Apart from it, a parametric study was initiated to uncover whatever effects rigid bedrock has upon hazard parameters for various depths of soil profile up to 30 m, 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m, 180 m and 200 m from the ground surface. The overriding purpose of doing said parametric study is centered upon helping the stack holders who can use the data for future development. Such a study is the first of its kind for the Bhutan region, which suffers from the unavailability of national seismic code, and this is a preliminary step towards achieving it.


Author(s):  
Alexander Tyapin ◽  
Nikita Antonov

The authors suggest a new procedure of Site Response Analysis (SRA) for the so-called “side” (or additional) soil profiles – Low Boundary (LB) and Upper Boundary (UB). Standards require the analyses of these profiles in addition to the Best Estimate profile (BE) to account for the uncertainty in the input data about soil properties. The authors suggest stopping using the same input time history for all three profiles as a control motion at the surface, because it corresponds to the different physical seismic excitations coming form the depth. This is not in linewith the ideology of Standards. Instead the authors suggest using the same time history as a control motion at the outcropped surface of the underlying half-space. This is also not completely correct, because for these three profiles (BE, UB and LB) the underlying half-spaces are also different. However, due to the physical considerations if all half-spaces are stiff enough, the error should not be so important. The effect of the proposed change is demonstrated on a particular site. The changes in the velocity and damping profiles have proved to be negligible, but the difference in the resulting response spectra at the outcropped surface of the foundation mat has proved to be significant. Generally, the response spectra for the “side” profiles came closer to spectrum for the BE profile. This result reflects the real world logic.


Sign in / Sign up

Export Citation Format

Share Document