An Experimental Study of Tracking Control of Pneumatic Servo Actuator System

2018 ◽  
Vol 22 (5) ◽  
pp. 27-35
Author(s):  
Sung-Gun Han ◽  
Hyoung-Eui Kim
2017 ◽  
Vol 29 (4) ◽  
pp. 757-765 ◽  
Author(s):  
Soichiro Watanabe ◽  
◽  
Masanori Harada

This paper investigates the application of optimal control to a micro ground vehicle (MGV) experimentally. The model predictive control (MPC) technique is used for the overall tracking controller during the maneuver. The reference trajectory for MPC is preliminarily obtained by numerical computation of the optimal control problem, which is prescribed as a minimum-time maneuver. The results provide nominal tracking performance and validate the feasibility of the approach.


2011 ◽  
Vol 34 (4) ◽  
pp. 463-476 ◽  
Author(s):  
Hazem I Ali ◽  
Samsul Bahari B Mohd Noor ◽  
SM Bashi ◽  
Mohammad Hamiruce Marhaban

In this paper, a particle swarm optimization (PSO) method is proposed to design Quantitative Feedback Theory (QFT) control. This method minimizes a proposed cost function subject to appropriate robust stability and performance QFT constraints. The PSO algorithm is simple and easy to implement, and can be used to automate the loop shaping procedures of the standard QFT. The proposed method is applied to the high uncertainty pneumatic servo actuator system as an example to illustrate the design procedure of the proposed algorithm. The proposed method is compared with the standard QFT control. The results show that the superiority of the proposed method in that it can achieve the same robustness requirements of standard QFT control with simple structure and low order controller.


Sign in / Sign up

Export Citation Format

Share Document