A Study on High Definition Road Map Usability for Application of Autonomous Driving Function

2021 ◽  
Vol 22 (11) ◽  
pp. 1893-1902
Author(s):  
Jong-Min Oh ◽  
Kwang-Jin Han ◽  
Yun-Soo Choi ◽  
Byeong-Heon Min ◽  
Sang-Min Lee
2021 ◽  
Author(s):  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Irfan Khan ◽  
Nicola Amati ◽  
Andrea Tonoli

2021 ◽  
Vol 10 (11) ◽  
pp. 761
Author(s):  
Tengfei Yu ◽  
He Huang ◽  
Nana Jiang ◽  
Tri Dev Acharya

High-definition maps (HDM) for autonomous driving (AD) are an important component of AD systems. HDMs accurately provide a priori information, including lane lines, and road signs, for AD systems. It is an important task to make a reasonable accuracy assessment of the HDM. The current methods for relative accuracy evaluation of general maps in the field of mapping are not fully applicable to HDMs. In this study, a method based on point set alignment and resampling is used to evaluate the relative accuracy of lane lines, and experiments are conducted based on relevant real HDM data. The results show that the relative accuracy of the lane lines is more detailed and relevant than the traditional method. This has implications for the quality control of HDM production.


2021 ◽  
Vol 13 (22) ◽  
pp. 4525
Author(s):  
Junjie Zhang ◽  
Kourosh Khoshelham ◽  
Amir Khodabandeh

Accurate and seamless vehicle positioning is fundamental for autonomous driving tasks in urban environments, requiring the provision of high-end measuring devices. Light Detection and Ranging (lidar) sensors, together with Global Navigation Satellite Systems (GNSS) receivers, are therefore commonly found onboard modern vehicles. In this paper, we propose an integration of lidar and GNSS code measurements at the observation level via a mixed measurement model. An Extended Kalman-Filter (EKF) is implemented to capture the dynamic of the vehicle movement, and thus, to incorporate the vehicle velocity parameters into the measurement model. The lidar positioning component is realized using point cloud registration through a deep neural network, which is aided by a high definition (HD) map comprising accurately georeferenced scans of the road environments. Experiments conducted in a densely built-up environment show that, by exploiting the abundant measurements of GNSS and high accuracy of lidar, the proposed vehicle positioning approach can maintain centimeter-to meter-level accuracy for the entirety of the driving duration in urban canyons.


2018 ◽  
Author(s):  
Yu Takeuchi ◽  
Tanaka Hideyuki ◽  
Hitosugi Kazuo ◽  
Uno Tomoki

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4703
Author(s):  
Yookhyun Yoon ◽  
Taeyeon Kim ◽  
Ho Lee ◽  
Jahnghyon Park

For driving safely and comfortably, the long-term trajectory prediction of surrounding vehicles is essential for autonomous vehicles. For handling the uncertain nature of trajectory prediction, deep-learning-based approaches have been proposed previously. An on-road vehicle must obey road geometry, i.e., it should run within the constraint of the road shape. Herein, we present a novel road-aware trajectory prediction method which leverages the use of high-definition maps with a deep learning network. We developed a data-efficient learning framework for the trajectory prediction network in the curvilinear coordinate system of the road and a lane assignment for the surrounding vehicles. Then, we proposed a novel output-constrained sequence-to-sequence trajectory prediction network to incorporate the structural constraints of the road. Our method uses these structural constraints as prior knowledge for the prediction network. It is not only used as an input to the trajectory prediction network, but is also included in the constrained loss function of the maneuver recognition network. Accordingly, the proposed method can predict a feasible and realistic intention of the driver and trajectory. Our method has been evaluated using a real traffic dataset, and the results thus obtained show that it is data-efficient and can predict reasonable trajectories at merging sections.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3145 ◽  
Author(s):  
Kichun Jo ◽  
Chansoo Kim ◽  
Myoungho Sunwoo

High Definition (HD) maps are becoming key elements of the autonomous driving because they can provide information about the surrounding environment of the autonomous car without being affected by the real-time perception limit. To provide the most recent environmental information to the autonomous driving system, the HD map must maintain up-to-date data by updating changes in the real world. This paper presents a simultaneous localization and map change update (SLAMCU) algorithm to detect and update the HD map changes. A Dempster–Shafer evidence theory is applied to infer the HD map changes based on the evaluation of the HD map feature existence. A Rao–Blackwellized particle filter (RBPF) approach is used to concurrently estimate the vehicle position and update the new map state. The detected and updated map changes by the SLAMCU are reported to the HD map database in order to reflect the changes to the HD map and share the changing information with the other autonomous cars. The SLAMCU was evaluated through experiments using the HD map of traffic signs in the real traffic conditions.


Author(s):  
G. Struck ◽  
J. Geisler ◽  
F. Laubenstein ◽  
H.-H. Nagel ◽  
G. Siegle
Keyword(s):  

Author(s):  
Andrey Azarchenkov ◽  
Maksim Lyubimov

The problem of creating a fully autonomous vehicle is one of the most urgent in the field of artificial intelligence. Many companies claim to sell such cars in certain working conditions. The task of interacting with other road users is to detect them, determine their physical properties, and predict their future states. The result of this prediction is the trajectory of road users’ movement for a given period of time in the near future. Based on such trajectories, the planning system determines the behavior of an autonomous-driving vehicle. This paper demonstrates a multi-agent method for determining the trajectories of road users, by means of a road map of the surrounding area, working with the use of convolutional neural networks. In addition, the input of the neural network gets an agent state vector containing additional information about the object. A number of experiments are conducted for the selected neural architecture in order to attract its modifications to the prediction result. The results are estimated using metrics showing the spatial deviation of the predicted trajectory. The method is trained using the nuscenes test dataset obtained from lgsvl-simulator.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4076
Author(s):  
Jisang Lee ◽  
Suhong Yoo ◽  
Seunghwan Hong ◽  
Mohammad Gholami Farkoushi ◽  
Junsu Bae ◽  
...  

Road information high definition maps (HD map) contain information about the facilities around the roads and are often constructed through a mobile mapping system (MMS). Although constructing an HD map is essential for road maintenance and the application of autonomous driving in the future, it is problematic to acquire the data of objects other than the facilities in an unstructured form while operating the MMS. In this study, the researchers define this object data as clutter objects and present a method of automatic removal using characteristics of the MMS and image segmentation techniques. By applying the method to 10 KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago) datasets, clutter objects were removed with an average overall accuracy of 91% with 0% (0.448%) error of commission for the complete point cloud map.


Sign in / Sign up

Export Citation Format

Share Document