scholarly journals Seamless Vehicle Positioning by Lidar-GNSS Integration: Standalone and Multi-Epoch Scenarios

2021 ◽  
Vol 13 (22) ◽  
pp. 4525
Author(s):  
Junjie Zhang ◽  
Kourosh Khoshelham ◽  
Amir Khodabandeh

Accurate and seamless vehicle positioning is fundamental for autonomous driving tasks in urban environments, requiring the provision of high-end measuring devices. Light Detection and Ranging (lidar) sensors, together with Global Navigation Satellite Systems (GNSS) receivers, are therefore commonly found onboard modern vehicles. In this paper, we propose an integration of lidar and GNSS code measurements at the observation level via a mixed measurement model. An Extended Kalman-Filter (EKF) is implemented to capture the dynamic of the vehicle movement, and thus, to incorporate the vehicle velocity parameters into the measurement model. The lidar positioning component is realized using point cloud registration through a deep neural network, which is aided by a high definition (HD) map comprising accurately georeferenced scans of the road environments. Experiments conducted in a densely built-up environment show that, by exploiting the abundant measurements of GNSS and high accuracy of lidar, the proposed vehicle positioning approach can maintain centimeter-to meter-level accuracy for the entirety of the driving duration in urban canyons.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4236
Author(s):  
Woosik Lee ◽  
Hyojoo Cho ◽  
Seungho Hyeong ◽  
Woojin Chung

Autonomous navigation technology is used in various applications, such as agricultural robots and autonomous vehicles. The key technology for autonomous navigation is ego-motion estimation, which uses various sensors. Wheel encoders and global navigation satellite systems (GNSSs) are widely used in localization for autonomous vehicles, and there are a few quantitative strategies for handling the information obtained through their sensors. In many cases, the modeling of uncertainty and sensor fusion depends on the experience of the researchers. In this study, we address the problem of quantitatively modeling uncertainty in the accumulated GNSS and in wheel encoder data accumulated in anonymous urban environments, collected using vehicles. We also address the problem of utilizing that data in ego-motion estimation. There are seven factors that determine the magnitude of the uncertainty of a GNSS sensor. Because it is impossible to measure each of these factors, in this study, the uncertainty of the GNSS sensor is expressed through three variables, and the exact uncertainty is calculated. Using the proposed method, the uncertainty of the sensor is quantitatively modeled and robust localization is performed in a real environment. The approach is validated through experiments in urban environments.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4209 ◽  
Author(s):  
Suraj Bijjahalli ◽  
Roberto Sabatini ◽  
Alessandro Gardi

One of the primary challenges facing Urban Air Mobility (UAM) and the safe integration of Unmanned Aircraft Systems (UAS) in the urban airspace is the availability of robust, reliable navigation and Sense-and-Avoid (SAA) systems. Global Navigation Satellite Systems (GNSS) are typically the primary source of positioning for most air and ground vehicles and for a growing number of UAS applications; however, their performance is frequently inadequate in such challenging environments. This paper performs a comprehensive analysis of GNSS performance for UAS operations with a focus on failure modes in urban environments. Based on the analysis, a guidance strategy is developed which accounts for the influence of urban structures on GNSS performance. A simulation case study representative of UAS operations in urban environments is conducted to assess the validity of the proposed approach. Results show improved accuracy (approximately 25%) and availability when compared against a conventional minimum-distance guidance strategy.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2400 ◽  
Author(s):  
Steffen Schön ◽  
Claus Brenner ◽  
Hamza Alkhatib ◽  
Max Coenen ◽  
Hani Dbouk ◽  
...  

Global Navigation Satellite Systems (GNSS) deliver absolute position and velocity, as well as time information (P, V, T). However, in urban areas, the GNSS navigation performance is restricted due to signal obstructions and multipath. This is especially true for applications dealing with highly automatic or even autonomous driving. Subsequently, multi-sensor platforms including laser scanners and cameras, as well as map data are used to enhance the navigation performance, namely in accuracy, integrity, continuity and availability. Although well-established procedures for integrity monitoring exist for aircraft navigation, for sensors and fusion algorithms used in automotive navigation, these concepts are still lacking. The research training group i.c.sens, integrity and collaboration in dynamic sensor networks, aims to fill this gap and to contribute to relevant topics. This includes the definition of alternative integrity concepts for space and time based on set theory and interval mathematics, establishing new types of maps that report on the trustworthiness of the represented information, as well as taking advantage of collaboration by improved filters incorporating person and object tracking. In this paper, we describe our approach and summarize the preliminary results.


2018 ◽  
Vol 67 (1) ◽  
pp. 65-72
Author(s):  
Grzegorz Czopik ◽  
Tomasz Kraszewski

The GNSS (GNSS — Global Navigation Satellite Systems) receivers can be utilized to obtain accurate time markers. The preliminary results of the cheap GNSS receivers’ tests are presented in the paper. The one receiver’s price (including antenna) does not exceed 30 $. The studies on the use of receivers in the time synchronization systems were executed. Three identical models of receiver modules were used. The 1PPS (1PPS — 1 Pulse Per Second) signals available on the receiver’s output were used. The 1PPS’s main time characteristics were described. Delay times between different receivers 1PPS signals were measured. Measurements were taken using 1 GHz oscilloscope and precise time/frequency counter T3200U. Keywords: time synchronization, 1PPS, GNSS, GPS time


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1768
Author(s):  
Chris Danezis ◽  
Miltiadis Chatzinikos ◽  
Christopher Kotsakis

Permanent Global Navigation Satellite Systems (GNSS) reference stations are well established as a powerful tool for the estimation of deformation induced by man-made or physical processes. GNSS sensors are successfully used to determine positions and velocities over a specified time period, with unprecedented accuracy, promoting research in many safety-critical areas, such as geophysics and geo-tectonics, tackling problems that torment traditional equipment and providing deformation products with absolute accuracy. Cyprus, being located at the Mediterranean fault, exhibits a very interesting geodynamic regime, which has yet to be investigated thoroughly. Accordingly, this research revolves around the estimation of crustal deformation in Cyprus using GNSS receivers. CYPOS (CYprus POsitioning System), a network of seven permanent GNSS stations has been operating since 2008, under the responsibility of the Department of Lands and Surveys. The continuous flow of positioning data collected over this network, offers the required information to investigate the behavior of the crustal deformation field of Cyprus using GNSS sensors for the first time. This paper presents the results of a multi-year analysis (11/2011–01/2017) of daily GNSS data and provides inferences of linear and nonlinear deforming signals into the position time series of the network stations. Specifically, 3D station velocities and seasonal periodic displacements are jointly estimated and presented via a data stacking approach with respect to the IGb08 reference frame.


2012 ◽  
Vol 9 ◽  
pp. 63-76 ◽  
Author(s):  
Michal Kačmařík ◽  
Lukáš Rapant

Paper is focused on GNSS meteorology which is generally used for the determination of water vapour distribution in the atmosphere from GNSS measurements. Water vapour in the atmosphere is an important parameter which influences the state and development of the weather. At first, the paper presents basics of the GNSS meteorology and tomography of the atmosphere and subsequently introduces a new GNSS tomography method which doesn't require an extensive network of GNSS receivers, but uses only a few receivers situated in a line. After a theoretical concept describing this method and used mathematical background, the results from a real experiment are shown and discussed. Unfortunately the results indicate that presented method is not able to provide credible outputs. Possibly the main problem lies in an insufficient number of available signals from current global navigation satellite systems (GPS and GLONASS) where the improvement could be expected after the start of Galileo and Compass. Potential ways how to improve the results without increasing the number of satellites are outlined in the last section.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2169
Author(s):  
Viktor Tihanyi ◽  
Tamás Tettamanti ◽  
Mihály Csonthó ◽  
Arno Eichberger ◽  
Dániel Ficzere ◽  
...  

A spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles—equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization—carried out special test scenarios while collecting detailed data using different sensors. All of the test runs were recorded by both vehicles and infrastructure. The paper also showcases application examples to demonstrate the viability of the collected data having access to the ground truth labeling. This data set may support a large variety of solutions, for the test and validation of different kinds of approaches and techniques. As a complementary task, the available 5G network was monitored and tested under different radio conditions to investigate the latency results for different measurement scenarios. A part of the measured data has been shared openly, such that interested automotive and academic parties may use it for their own purposes.


Author(s):  
Przemysław Falkowski-Gilski

Today, thanks to mobile devices, satellite communication is available to anyone and everywhere. Gaining information on one’s position using GNSS (Global Navigation Satellite Systems), particularly in unknown urban environments, had become an everyday activity. With the widespread of mobile devices, particularly smartphones, each person can obtain information considering his or her location anytime and everywhere. This paper is focused on a study, considering the quality of satellite communication in case of selected mobile terminals. It describes a measurement campaign carried out in varying urban environments, including a set of Android-powered smartphones coming from different manufacturers. Based on this, respective conclusions and remarks are given, which can aid consumers as well as device manufacturers and application developers.


Author(s):  
P. Jende ◽  
F. Nex ◽  
M. Gerke ◽  
G. Vosselman

Mobile Mapping (MM) has gained significant importance in the realm of high-resolution data acquisition techniques. MM is able to record georeferenced street-level data in a continuous (laser scanners) and/or discrete (cameras) fashion. MM’s georeferencing relies on a conjunction of Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU) and optionally on odometry sensors. While this technique does not pose a problem for absolute positioning in open areas, its reliability and accuracy may be diminished in urban areas where high-rise buildings and other tall objects can obstruct the direct line-of-sight between the satellite and the receiver unit. Consequently, multipath measurements or complete signal outages impede the MM platform’s localisation and may affect the accurate georeferencing of collected data. This paper presents a technique to recover correct orientation parameters for MM imaging platforms by utilising aerial images as an external georeferencing source. This is achieved by a fully automatic registration strategy which takes into account the overall differences between aerial and MM data, such as scale, illumination, perspective and content. Based on these correspondences, MM data can be verified and/or corrected by using an adjustment solution. The registration strategy is discussed and results in a success rate of about 95 %.


2021 ◽  
Author(s):  
Periklis-Konstantinos Diamantidis ◽  
Grzegorz Kłopotek ◽  
Rüdiger Haas ◽  
Jan Johansson

<p>The dawn of Beidou and Galileo as operational Global Navigation Satellite Systems (GNSS) alongside Global Positioning System (GPS) and GLONASS as well as new features that are now present in all GNSS, such as a triple-frequency setup, create new possibilities concerning improved estimation and assessment of various geodetic products. In particular, the multi-GNSS analysis gives an access to a better sky coverage allowing for improved estimation of zenith wet delays (ZWD) and tropospheric gradients (GRD), and can be used to determine integer phase ambiguities. The Multi-GNSS Experiment (MGEX), as realised by the International GNSS Service (IGS), provides orbit, clock and observation data for all operational GNSS. To take advantage of the new capabilities that these constellations bring, space-geodetic software packages have been retrofitted with Multi-GNSS-compliant modules. Based on this, two software packages, namely GipsyX and c5++, are utilised by way of the static Precise Point Positioning (PPP) approach using six months of data, and an assessment of the derived geodetic products is carried out for several GNSS receivers located at the Onsala core site. More specifically, we perform both single-constellation and multi-GNSS data analysis using Kalman filter and least-squares methods and assess the quality of the derived station positions, ZWD and GRD. A combined solution using all GNSS constellations is carried out and the improvement with respect to station position repeatabilities is assessed for each station. Results from the two software packages are compared with respect to each other and the discrepancies are discussed. Inter-system biases, which homogenise the different time scale that each GNSS operates in, and are necessary for the multi-GNSS combination, are estimated and presented. Finally, the applied inter-system weighting and its impact on the derived geodetic products are discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document