scholarly journals Efficacy of Some Botanical Extracts on Root-Knot Nematode (Meloidogyne incognita) Egg- Hatch and Juvenile Mortality in vitro

2018 ◽  
Vol 2 (3) ◽  
pp. 1-13
Author(s):  
C. I. Jidere ◽  
J. I. Oluwatayo
2021 ◽  
Vol 52 (3) ◽  
pp. 60-65
Author(s):  
O.A. Fabiyi ◽  
A.O. Claudius-Cole ◽  
G.A. Olatunji

Abstract The infestation with root knot nematode Meloidogyne spp. is a key issue in agriculture. Conventional control methods are based on the use of synthetic nematicides, which comes with severe environmental problems. In this study, n-phenyl imide and n-phenyl phthalamic acid were synthesized and reacted independently with Enantia chlorantha crude extract–manganese chloride complex. The effects of the resulting organic compounds were appraised against the root knot nematode Meloidogyne incognita (Kofoid and White 1919) juveniles and eggs in two laboratory experiments. The most active compound was n-phenyl phthalamic acid (PN/TLMA) with 4% egg hatch over a 9-day observation after treatment as against distilled water which recorded 100% egg hatch at 9 days after treatment. n-Phenyl phthalamic acid showed 100% juvenile mortality at 10 days of observation compared to carbofuran dissolved in water (CBFN/water) and carbofuran dissolved in hydroxypropyl-β-cyclodextrin (CBFN/HPCD) while no outstanding (P < 0.05) difference was recorded between the effects of other organic compounds and carbofuran in both solvents. The different rates of treatment applications were not appreciably (P<0.05) dissimilar on percentage juvenile mortality and egg hatch. The nematicidal test results indicated that the synthesized imide compounds with manganese complex moiety are a promising basis for developing new nematicidal compounds with less environmental hazard.


2020 ◽  
Vol 80 (4) ◽  
pp. 829-838 ◽  
Author(s):  
R. Khan ◽  
I. Naz ◽  
S. Hussain ◽  
R. A. A. Khan ◽  
S. Ullah ◽  
...  

Abstract In vitro and screen house experiments were conducted to investigate the effectiveness of thirteen phytochemicals from Artemisia elegantissimia and A. incisa on root knot nematode, Meloidogyne incognita in tomato (Lycopersicon esculentum L.) cv. Rio Grande. A positive control (Carbofuran) and negative control (H2O) were also used for comparison. Effectiveness of phytochemicals against juveniles (J2s) mortality and egg hatch inhibition were evaluated after 24, 48 and 72 hours of incubation at three concentrations viz; 0.1, 0.2 and 0.3 mg/mL in vitro conditions. Amongst thirteen phytochemicals, Isoscopletin (Coumarin), Carbofuran and Apigenin (Flavonoid) showed the highest mortality and egg hatch inhibition of M. incognita at all intervals. Inhibition of eggs and J2s mortality were the greatest (90.0%) and (96.0%) at 0.3 mg/mL concentration. Application of phytochemicals caused reduction in number of galls, galling index, and egg masses on tomato plant and enhanced plant growth parameters under screen house conditions. Gall numbers (1.50), galling index (1.00), number of juveniles (4.83) and egg masses (4.00) were greatly reduced and plant growth parameters such as; plant height (28.48 cm), fresh (72.13 g) and dry shoot weights (35.99 g), and root fresh (6.58 g) and dry weights (1.43 g) were increased significantly by using Isoscopletin. In structure activity relationship, juveniles of M. incognita, exhibited variations in their shape and postures upon death when exposed to different concentrations of phytochemicals of Artemisia spp. The present study suggests that Artemisia based phytochemicals possess strong nematicidal effects and can be used effectively in an integrated disease management program against root knot nematodes.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
R. M. El-Ashry ◽  
Mohamed A. S. Ali ◽  
Ahmed E. A. Elsobki ◽  
Ahmed A. A. Aioub

Abstract Background Acceptable alternative eco-friendly tools in the present study were tested to control the root-knot nematode, Meloidogyne incognita, on greenhouse-cultivated vegetables. The nematicidal effect of rhizobacteria (Pseudomonas and Serratia), egg parasitic fungus (Purpureocillium lilacinum), abamectin (Streptomyces avermitilis), and 3 botanicals (colocynth, Citrullus colocynthis; moringa, Moringa oleifera; marigold, Tagetes erecta L.) singly or in combination was tested against M. incognita, in comparison with emamectin benzoate. Results In vitro treatments revealed that egg hatching and juvenile mortality were influenced by the type of bioagents, plant species of botanicals, and exposure time. All the tested bioagents and botanicals displayed nematicidal potential via their ovicidal and larvicidal action on egg hatching and J2 mortality of M. incognita. Three and 5 days post-treatment, abamectin and emamectin benzoate were more effective than P. lilacinum, Serratia and Pseudomonas, and C. colocynthis in inhibiting egg hatching: 96.31 and 94.88%; 95.79 and 94.05%; 94.11 and 94.46%; 85.54 and 87.28%; 88.87 and 84.30%, respectively. On the other hand, after 10 days, P. lilacinum gave the highest inhibition percentage (99.00%), followed by abamectin (89.25%). However, the difference was insignificant compared with the inhibition percentage of rhizobacteria, Serratia and Pseudomonas (88.69%; p ≤ 0.05). Moreover, juvenile mortality was 100.0, 96.80, and 91.60% after 10 days of treatment, respectively. However, botanicals showed a lower effect on egg hatching and juvenile mortality. Under greenhouse conditions, potential antagonism towards M. incognita by application the mixture of biocontrol agents and botanicals was more effective in controlling M. incognita than single treatments. Conclusions The combination of abamectin and/or emamectin benzoate with P. lilacinum and rhizobacteria was the most effective against M. incognita, followed by rhizobacteria and P. lilacinum, not only in decreasing galls and reproduction of M. incognita but also in increasing plant growth of tomato parameters than the control. The application of various bioagents including abamectin might be a potential antagonism strategy against phytonematodes in protected agricultural areas.


2018 ◽  
Vol 7 (2) ◽  
pp. 141-145
Author(s):  
Gulwaiz Akhter ◽  
◽  
Tabreiz Ahmad Khan ◽  

Aqueous leaf extracts were utilized to assess the nematicidal or nematostatic property on second stage juvenile of Meloidogyne incognita. The juvenile were incubate at various concentration of leaf extract viz., 250, 500, 1000 and 2000 ppm. Corrected mortality using Abbot’s formula was recorded after 12, 24 and 48 hours respectively. Correlation coefficient (Pearson) was checked to explain the association between percentages mortality of juvenile with extract concentrations. Linear regression was used to denote concentration and rank dependent outcome of four aqueous plant leaves extracts on the second stage juvenile (J2) mortality. All leaf extracts were found to be nematicidal or nematostatic in property. Maximum juvenile mortality rate was recorded in Xanthium strumarium throughout the incubation period as followed by Acalypha indica, Argemone mexicana and Colocasia gigantean. Concentration depended effect of X. strumarium and C. gigantean proved maximum and minimum level when analyzed by values of regression and correlation. Aqueous leaves extracts of these aforementioned weeds give us an idea about nematicidal properties and therefore may be used as biopesticide in future


2017 ◽  
Vol 4 (3) ◽  
pp. 1-7 ◽  
Author(s):  
Amir Khan ◽  
Moh Tariq ◽  
Mohd Asif ◽  
Mansoor Siddiqui

Nematology ◽  
2007 ◽  
Vol 9 (3) ◽  
pp. 343-349 ◽  
Author(s):  
Michael Boppré ◽  
Tim Thoden ◽  
Johannes Hallmann

Abstract1,2-dehydropyrrolizidine alkaloids (PAs) represent a class of secondary plant compounds that are active in defence against herbivory. They are present in Chromolaena odorata, one of the most invasive weeds of Asia and Africa. In vitro studies demonstrate that pure PAs from C. odorata roots have nematicidal effects on the root-knot nematode Meloidogyne incognita, even at concentrations of 70-350 ppm. In vivo experiments show that mulch or aqueous crude extracts from C. odorata roots reduce the infection of lettuce by M. incognita. Thus, the use of PA-containing plants appears to be a valuable element for integrated nematode management.


Sign in / Sign up

Export Citation Format

Share Document