scholarly journals Exploring the Additive Effects of Aluminium and Potassium Sulfates in Enhancing the Charge Cycle of Lead Acid Batteries

Author(s):  
Chijioke Elijah Onu ◽  
Nnabundo Nwabunwane Musei ◽  
Philomena Kanwulia Igbokwe

The adoption of aluminium sulfate and potassium sulfate as electrolyte additives were investigated to determine the possibility of enhancing the charge cycle of 2V/ 20AH lead acid battery with reference to the conventional dilute sulfuric acid electrolyte. The duration and efficiency of lead acid batteries have been a challenge for industries over time due to weak electrolyte and insufficient charge cycle leading to sulfation. This has affected the long-term production output in manufacturing companies that depend on lead acid batteries as alternative power source. Hence there is need to explore the use of specific sulfate additives that can possibly address this gap. The electrolyte solutions were in three separate charge and discharge cycles involving dilute sulfuric acid electrolyte, dilute sulfuric acid-aluminium sulfate mixed electrolyte and dilute sulfuric acid-potassium sulfate mixed electrolyte for one hour each. The total voltage after 30 minutes charge cycle was 2.3V, 2.35V and 5.10V for dilute sulfuric acid, aluminium sulfate additive and potassium sulfate additive respectively. The cell efficiency for dilute sulfuric acid, aluminium sulfate additive and potassium sulfate additive electrolytes are 77%, 77% and 33% respectively. The electrolyte sulfate additives were of no positive impact to the conventional dilute sulfuric acid electrolyte of a typical lead acid battery due to the low difference in potentials between the terminals.

2021 ◽  
Vol 105 (1) ◽  
pp. 119-134
Author(s):  
Jana Zimáková ◽  
Petr Baca ◽  
Martin Langer ◽  
Tomáš Binar

This work deals with lead-acid batteries, their properties and individual types that are available on the market. The temperature dependences of the battery parameters at different ambient temperatures and at different discharging and charging modes are measured. 6 batteries are tested at different charging currents, which provides information about their behavior both during discharge and at the time of charging. During the experiments, testing is not only performed at room temperature, but the batteries are also exposed to high temperatures up to 75 °C.


2022 ◽  
Vol 1 (15) ◽  
pp. 100-103
Author(s):  
Dmitriy Shurupov ◽  
Nina Sosnovskaya ◽  
Nikolay Korchevin ◽  
Aleksey Bal'chugov

The article presents the results of a study of the process of obtaining a shiny nickel coating on steel from sulfuric acid electrolyte in the presence of an organic brightening additive - a de-rivative of rubeanhydric acid - under different modes of electrolysis. The expediency of using a nickel coating for corrosion protection of the housing of a high-pressure centrifugal pump has been substantiated


2005 ◽  
Vol 3 (2) ◽  
pp. 763-766 ◽  
Author(s):  
Shoichiro Ikeda ◽  
Satoshi Iwata ◽  
Kenichi Nakagawa ◽  
Yosinari Kozuka ◽  
Akiya Kozawa

2020 ◽  
Vol 32 (21) ◽  
pp. 9098-9106
Author(s):  
Marta Moreno-Gonzalez ◽  
Aoxue Huang ◽  
Phil A. Schauer ◽  
Ke Hu ◽  
Brian Lam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document