scholarly journals Mathematical Modelling of the Dynamics of COVID-19 Disease Transmission

Author(s):  
A. B. Okrinya ◽  
E. Esekhaigbe

We construct a simple mathematical model that describes the dynamics of the transmission of COVID-19 disease in a human population. It accounts for the various phases of the disease and its mode of contact through infectious humans and surfaces. The contribution of asymptomatic humans in the dynamics of the disease is well represented. The model is a system of ordinary dierential equations that describes the evolution of humans in a range of COVID-19 states due to emergence of an index case. The analysis includes establishment of the basic reproduction number, R0, where, R0 < 1 signifies a disease free state that is locally asymptotically stable. A key result in this study shows some long term damped oscillatory behaviour that do not seem to end soon.

2016 ◽  
Vol 24 (04) ◽  
pp. 577-609 ◽  
Author(s):  
YANRU YAO ◽  
JUPING ZHANG

In this paper, we develop a two-strain SIS model on heterogeneous networks with demographics for disease transmission. We calculate the basic reproduction number [Formula: see text] of infection for the model. We prove that if [Formula: see text], the disease-free equilibrium is globally asymptotically stable. If [Formula: see text], the conditions of the existence and global asymptotical stability of two boundary equilibria and the existence of endemic equilibria are established, respectively. Numerical simulations illustrate that the degree distribution of population varies with time before it reaches the stationary state. What is more, the basic reproduction number [Formula: see text] does not depend on the degree distribution like in the static network but depend on the demographic factors.


Author(s):  
Samuel B. Apima ◽  
Jacinta M. Mutwiwa

COVID-19, a novel coronavirus, is a respiratory infection which is spread between humans through small droplets expelled when a person with COVID-19 sneezes, coughs, or speaks. An SEIQR model to investigate the spread of COVID-19 was formulated and analysed. The disease free equilibrium point for formulated model was shown to be globally asymptotically stable. The endemic states were shown to exist provided that the basic reproduction number is greater than unity. By use of Routh-Hurwitz criterion and suitable Lyapunov functions, the endemic states are shown to be locally and globally asymptotically stable respectively. This means that any perturbation of the model by the introduction of infectives the model solutions will converge to the endemic states whenever reproduction number is greater than one, thus the disease transmission levels can be kept quite low or manageable with minimal deaths at the peak times of the re-occurrence.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pakwan Riyapan ◽  
Sherif Eneye Shuaib ◽  
Arthit Intarasit

In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S , exposed E , symptomatically infected I s , asymptomatically infected I a , quarantined Q , recovered R , and death D , respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as R cvd 19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if R cvd 19 < 1 . On the other hand, the global asymptotic stability of the endemic equilibrium occurs if R cvd 19 > 1 . The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.


2020 ◽  
Vol 13 (07) ◽  
pp. 2050062
Author(s):  
Yibeltal Adane Terefe ◽  
Semu Mitiku Kassa

A deterministic model for the transmission dynamics of melioidosis disease in human population is designed and analyzed. The model is shown to exhibit the phenomenon of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium when the basic reproduction number [Formula: see text] is less than one. It is further shown that the backward bifurcation dynamics is caused by the reinfection of individuals who recovered from the disease and relapse. The existence of backward bifurcation implies that bringing down [Formula: see text] to less than unity is not enough for disease eradication. In the absence of backward bifurcation, the global asymptotic stability of the disease-free equilibrium is shown whenever [Formula: see text]. For [Formula: see text], the existence of at least one locally asymptotically stable endemic equilibrium is shown. Sensitivity analysis of the model, using the parameters relevant to the transmission dynamics of the melioidosis disease, is discussed. Numerical experiments are presented to support the theoretical analysis of the model. In the numerical experimentations, it has been observed that screening and treating individuals in the exposed class has a significant impact on the disease dynamics.


Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Baba Seidu

A deterministic ordinary differential equation model for SARS-CoV-2 is developed and analysed, taking into account the role of exposed, mildly symptomatic, and severely symptomatic persons in the spread of the disease. It is shown that in the absence of infective immigrants, the model has a locally asymptotically stable disease-free equilibrium whenever the basic reproduction number is below unity. In the absence of immigration of infective persons, the disease can be eradicated whenever ℛ 0 < 1 . Specifically, if the controls u i ,   i = 1,2,3,4 , are implemented to 100% efficiency, the disease dies away easily. It is shown that border closure (or at least screening) is indispensable in the fight against the spread of SARS-CoV-2. Simulation of optimal control of the model suggests that the most cost-effective strategy to combat SARS-CoV-2 is to reduce contact through use of nose masks and physical distancing.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hai-Feng Huo ◽  
Guang-Ming Qiu

A more realistic mathematical model of malaria is introduced, in which we not only consider the recovered humans return to the susceptible class, but also consider the recovered humans return to the infectious class. The basic reproduction numberR0is calculated by next generation matrix method. It is shown that the disease-free equilibrium is globally asymptotically stable ifR0≤1, and the system is uniformly persistence ifR0>1. Some numerical simulations are also given to explain our analytical results. Our results show that to control and eradicate the malaria, it is very necessary for the government to decrease the relapse rate and increase the recovery rate.


2007 ◽  
Vol 8 (3) ◽  
pp. 191-203 ◽  
Author(s):  
J. Tumwiine ◽  
J. Y. T. Mugisha ◽  
L. S. Luboobi

We use a model to study the dynamics of malaria in the human and mosquito population to explain the stability patterns of malaria. The model results show that the disease-free equilibrium is globally asymptotically stable and occurs whenever the basic reproduction number,R0is less than unity. We also note that whenR0>1, the disease-free equilibrium is unstable and the endemic equilibrium is stable. Numerical simulations show that recoveries and temporary immunity keep the populations at oscillation patterns and eventually converge to a steady state.


Sign in / Sign up

Export Citation Format

Share Document