Experimental and Mathematical Model for the Study of the In-vitro Susceptibility of Antimicrobial Agents against Escherichi coli Isolates Obtained from Abattoir Centres in Ikorodu, Lagos, Nigeria

2018 ◽  
Vol 28 (2) ◽  
pp. 1-15
Author(s):  
Abdurasid Ayinla ◽  
Momoh Oshiobugie ◽  
Aderele Raphael
1996 ◽  
Vol 58 (11) ◽  
pp. 1107-1111 ◽  
Author(s):  
Hideki KOBAYASHI ◽  
Nejdet SONMEZ ◽  
Tetsuo MOROZUMI ◽  
Kenji MITANI ◽  
Nobuyoshi ITO ◽  
...  

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang

Abstract Background OXA-48 is a carbapenemase with low-level hydrolytic activity toward cephalosporins. This study evaluated in vitro activities of ceftazidime-avibactam (CAZ-AVI), meropenem (MEM), meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T), and other antimicrobial agents against 113 OXA-48-producing Enterobacterales with multiple resistance mechanisms collected in a 2017–2018 global surveillance program. Methods Nonduplicate clinical isolates of 113 Enterobacterales were collected from medical centers in 25 countries in 2017–2018. In vitro susceptibility tests were performed by broth microdilution with a custom-made panel consisting of CAZ-AVI, ceftazidime (CAZ), MEM, MVB, C/T, colistin (COL), gentamicin (GEN), levofloxacin (LEV), and amikacin (AMK). Whole genome sequencing or quantitative PCR data were used to analyze resistance mechanisms, such as OXA-48, extended-spectrum β-lactamase (ESBL), original-spectrum β-lactamase (OSBL), and AmpC β-lactamase. Clinical and Laboratory Standards Institute breakpoints were applied for susceptibility interpretations. Results Of 113 OXA-48–producing clinical isolates, 20 carried OXA-48 alone. The remaining 93 isolates carried additional β-lactamases, including 63 with ESBL (CTX-M-15) + OSBL (SHV, TEM), 15 with AmpC (DHA, AAC, CMY) + ESBL (CTX-M-15), and 15 with OSBL (SHV, TEM). 99.1% (all but 1) of all isolates tested were susceptible to CAZ-AVI, whereas 71.7%, 17.7%, and 14.2% were susceptible to MVB, MEM, and C/T, respectively. Among isolates harboring multiple resistance mechanisms (OXA-48 + ESBL + OSBL; n=63), 98.4%, 69.8%, 11.1%, and 7.9% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively. Among isolates carrying OXA-48 + AmpC + ESBL + OSBL (n=15), 100%, 66.7%, 13.3%, and 13.3% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively (Table). Aminoglycosides (AMK and GEN) and other β-lactams (eg, CAZ) were 20%–90% active against these isolates. COL was the second most effective comparator, inhibiting 83.2% of these isolates. Table Conclusion CAZ-AVI was the most effective agent in this study compared with other antibiotics, including β-lactams, β-lactam–β-lactamase inhibitor combinations, aminoglycosides, and COL, against OXA-48-producing Enterobacterales carrying multiple β-lactamases. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee)


1999 ◽  
Vol 123 (4) ◽  
pp. 285-289 ◽  
Author(s):  
Gary V. Doern ◽  
Angela B. Brueggemann ◽  
Michael A. Pfaller ◽  
Ronald N. Jones

Abstract Objective.—To assess the performance of clinical microbiology laboratories in the United States when conducting in vitro susceptibility tests with Streptococcus pneumoniae. Methods.—The results of a nationwide College of American Pathologists Proficiency Survey test sample, in which susceptibility testing of an isolate of S pneumoniae was performed, were assessed with respect to precision and accuracy. Results.—Wide variability was noted among participating laboratories with both minimum inhibitory concentration procedures and disk diffusion susceptibility tests when both methods were applied to S pneumoniae. Despite this high degree of variation, categorical interpretive errors were uncommon. Numerous laboratories reported results for antimicrobial agents that are not recommended by the National Committee for Clinical Laboratory Standards for tests with S pneumoniae. Conclusions.—Current susceptibility testing practices with S pneumoniae in the United States indicate limited precision and a tendency for laboratories to test and report results obtained with antimicrobial agents of questionable therapeutic value against this organism. Continued efforts to standardize susceptibility testing of S pneumoniae in the United States are warranted. In addition, modifications of existing interpretive criteria may be necessary.


1969 ◽  
Vol 18 (1) ◽  
pp. 21-23 ◽  
Author(s):  
John E. Martin ◽  
Arzell Lester ◽  
Douglas S. Kellogg ◽  
James D. Thayer

1997 ◽  
Vol 119 (2) ◽  
pp. 175-181 ◽  
Author(s):  
Y. HIRAKATA ◽  
T. YAMAGUCHI ◽  
K. IZUMIKAWA ◽  
J. MATSUDA ◽  
K. TOMONO ◽  
...  

Glycopeptide resistance in enterococci is now a cause of clinical concern in the United States and Europe. However, details of vancomycin resistance in enterococci in Japan have been unknown. We measured minimum inhibitory concentrations (MICs) of various antimicrobial agents for a total of 218 clinical strains of enterococci isolated in our hospital in 1995–6 in addition to 15 strains with known genotypic markers of resistance. We also screened vancomycin resistance genes using a single step multiplex-PCR.In clinical isolates, only two strains of Enterococcus gallinarum were of intermediate resistance to vancomycin (MIC, 8 μg/ml), while the others were all susceptible. Glycopeptides (vancomycin and teicoplanin) and streptogramins (RP 58500 and RPR 106972) showed potent antimicrobial effects for the isolates. In addition, ampicillin was also potent for Enterococcus faecalis, while ampicillin, minocycline and gentamicin were potent for Enterococcus avium. No vanA or vanB genes were detected, while vanC1 and vanC23 genes were detected from two and four strains, respectively. Our results suggest that incidence of VRE in Japan may be estimated as still very low at this time.


Author(s):  
Jade L. L. Teng ◽  
Elaine Chan ◽  
Asher C. H. Dai ◽  
Gillian Ng ◽  
Tsz Tuen Li ◽  
...  

Both typhoidal and non-typhoidal salmonellae are included in the top 15 drug-resistant threats described by the Center for Disease Control and Prevention of the United States. There is an urgent need to look for alternative antibiotics for the treatment of Salmonella infections. We examined the in vitro susceptibilities of ceftolozane/tazobactam and six other antibiotics on typhoidal and non-typhoidal salmonellae, including isolates that are extended-spectrum β-lactamase (ESBL)-positive, using the broth microdilution test. Of the 313 (52 typhoidal and 261 non-typhoidal) Salmonella isolates tested, 98.7% were susceptible to ceftolozane/tazobactam. Based on the overall MIC 50/90 values, Salmonella isolates were more susceptible to ceftolozane/tazobactam (0.25/0.5 mg/L) compared to all other comparator agents: ampicillin (≥64/≥64 mg/L), levofloxacin (0.25/1 mg/L), azithromycin (4/16 mg/L), ceftriaxone (≤0.25/4 mg/L), chloramphenicol (8/≥64 mg/L) and trimethoprim/sulfamethoxazole (1/≥8 mg/L). When comparing the activity of the antimicrobial agents against non-typhoidal Salmonella isolates according to their serogroup, ceftolozane/tazobactam had the highest activity (100%) against Salmonella serogroups D, G, I and Q isolates, whereas the lowest activity (85.7%) was observed against serogroup E isolates. All the 10 ESBL-producing Salmonella (all non-typhoidal) isolates, of which 8 were CTX-M-55-producers and 2 were CTX-M-65-producers, were sensitive to ceftolozane/tazobactam albeit with a higher MIC 50/90 value (1/2 mg/L) than non-ESBL-producers (0.25/0.5 mg/L). In summary, our data indicate that ceftolozane/tazobactam is active against most strains of both typhoidal and non-typhoidal salmonellae and also active against ESBL-producing salmonellae.


Sign in / Sign up

Export Citation Format

Share Document