scholarly journals Low-cycle Fatigue Behavior and Constitutive Relations for a Ferritic Stainless Steel at Elevated Temperatures

Author(s):  
S. M. Humayun Kabir ◽  
Tae-In Yeo

In this paper, the tensile and strain-controlled cyclic deformation behavior of a ferritic stainless steel which is developed for the exhaust manifold of automobiles is evaluated experimentally at different temperatures. The effect of temperature on monotonic tensile responses such as yield strength and ultimate tensile strength and the effect of temperature and strain amplitude on the evolution of peak stress are assessed. The objective of this study is also to reveal the mixed mode of cyclic hardening–softening behavior of the ferritic stainless steel under strain-controlled fatigue test conditions. A parameter, critical accumulated plastic strain, is introduced to the constitutive equations for the material for describing the hardening - softening responses. The nonlinear constitutive equations for describing the cyclic responses are implemented into Finite Element code using determined parameters for obtaining numerical simulation. The stabilized hysteretic responses obtained from experiment and predicted from numerical simulation are compared and found to be realistic.

2004 ◽  
Vol 261-263 ◽  
pp. 1135-1140 ◽  
Author(s):  
Keum Oh Lee ◽  
Sam Son Yoon ◽  
Soon Bok Lee ◽  
Bum Shin Kim

In recent, ferritic stainless steels are widely used in high temperature structure because of their high resistance in thermal fatigue and low prices. Tensile and low cycle fatigue(LCF) tests on 429EM stainless steel were performed at several temperatures from room temperature to 600°C. Elastic modulus, yield stress and ultimate tensile strength(UTS) decreased with increasing temperature. Considerable cyclic hardening occurred at 200°C and 400°C. 475°C embrittlement observed could not explain this phenomenon but dynamic strain aging(DSA) observed from 200°C to 500°C could explain the hardening mechanism at 200°C and 400°C. And it was observed that plastic strain energy density(PSED) was useful to predict fatigue life when large cyclic hardening occurred. Fatigue life using PSED over elastic modulus could be well predicted within 2X scatter band at various temperatures.


2021 ◽  
Vol 3 (1) ◽  
pp. 25
Author(s):  
Ikram Abarkan ◽  
Abdellatif Khamlichi ◽  
Rabee Shamass

Smooth and notched mechanical components made of metals frequently experience repeated cyclic loads at different temperatures. Thus, low cycle fatigue (LCF) is considered the dominant failure mode for these components. Stainless steel (SS) is the most widely selected material by engineers owing to its outstanding mechanical and LCF and anti-corrosion properties. Moreover, a reliable estimation of the fatigue life is essential in order to preserve people’s safety in industries. In the present study, an evaluation of some of the commonly known low cycle fatigue life methodologies are performed for notched and un-notched samples made of 316L (N) SS at ambient and higher temperatures. For the notched samples, the elastic–plastic strains were firstly determined and then the fatigue lives were estimated for constant nominal strain amplitudes, varying from ±0.4% to ±0.8%. A comparison between the calculated fatigue lives and those obtained experimentally from the literature was made. Overall, some of the widely used fatigue life prediction methods for smooth specimens have resulted in unsafe estimations for applied strain amplitudes ranging from ±0.3% to ±1.0%, and those of the notched specimens were generally found to give strongly conservative predictions. To overcome this problem, attempts were made to suggest new parameters that can precisely assess the lifetimes of smooth samples, and a new equation was suggested for notched samples under both room and high temperatures.


2015 ◽  
Vol 2015.90 (0) ◽  
pp. 280
Author(s):  
Ryuji TOMITA ◽  
Yoshihisa KANEKO ◽  
Makoto UCHIDA ◽  
Muhammad RIFAI ◽  
Hiroyuki MIYAMOTO ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 1146-1151 ◽  
Author(s):  
Keum Oh Lee ◽  
Seong Gu Hong ◽  
Sam Son Yoon ◽  
Soon Bok Lee

A thermomechanical fatigue (TMF) life prediction model for ferritic stainless steel, used in exhaust manifold of automobile, was developed based on Tomkins’ two-dimensional crack propagation model. Low-cycle fatigue (LCF) and TMF tests were carried out in a wide temperature range from 200 to 650°C. New concept of plastic strain range on TMF was proposed. Effective stress concept was introduced to get a reasonable stress range in TMF hysteresis loop. The proposed model predicted TMF life within 2X scatter band. The experimental results reveal that TMF life is about 10% of isothermal fatigue life.


Author(s):  
Jean Alain Le Duff ◽  
Andre´ Lefranc¸ois ◽  
Jean Philippe Vernot

In February/March 2007, The NRC issued Regulatory Guide “RG1.207” and Argonne National Laboratory issued NUREG/CR-6909 that is now applicable in the US for evaluations of PWR environmental effects in fatigue analyses of new reactor components. In order to assess the conservativeness of the application of this NUREG report, Low Cycle Fatigue (LCF) tests were performed by AREVA NP on austenitic stainless steel specimens in a PWR environment. The selected material exhibits in air environment a fatigue behavior consistent with the ANL reference “air” mean curve, as published in NUREG/CR-6909. LCF tests in a PWR environment were performed at various strain amplitude levels (± 0.6% or ± 0.3%) for two loading conditions corresponding to a simple or to a complex strain rate history. The simple loading condition is a fully reverse triangle signal (for comparison purposes with tests performed by other laboratories with the same loading conditions) and the complex signal simulates the strain variation for an actual typical PWR thermal transient. In addition, two various surface finish conditions were tested: polished and ground. This paper presents the comparisons of penalty factors, as observed experimentally, with penalty factors evaluated using ANL formulations (considering the strain integral method for complex loading), and on the other, the comparison of the actual fatigue life of the specimen with the fatigue life predicted through the NUREG report application. For the two strain amplitudes of ± 0.6% and ± 0.3%, LCF tests results obtained on austenitic stainless steel specimens in PWR environment with triangle waveforms at constant low strain rates give “Fen” penalty factors close to those estimated using the ANL formulation (NUREG/6909). However, for the lower strain amplitude level and a triangle loading signal, the ANL formulation is pessimistic compared to the AREVA NP test results obtained for polished specimens. Finally, it was observed that constant amplitude LCF test results obtained on ground specimens under complex loading simulating an actual sequence of a cold and hot thermal shock exhibits lower combined environmental and surface finish effects when compared to the penalty factors estimated on the basis of the ANL formulations. It appears that the application of the NUREG/CR-6909 in conjunction with the Fen model proposed by ANL for austenitic stainless steel provides excessive margins, whereas the current ASME approach seems sufficient to cover significant environmental effects for representative loadings and surface finish conditions of reactor components.


Sign in / Sign up

Export Citation Format

Share Document