scholarly journals Construction of Sedoheptulose-1,7-Bisphosphatase (Sbpase) for Manipulation in Guard Cells of Arabidopsis thaliana L.

Author(s):  
Batta Kucheli

Guard cells control the stomata through which exchange of gas takes place in plants by balancing between CO2 uptake for photosynthesis and water loss through transpiration leading to ultimate plant water use efficiency (WUE). Due to climate change, sustainable agriculture will therefore require a major reduction in plant water use hence stomata have become potential target for manipulation. Understanding the signal mechanisms of stomata is therefore critically important in facilitating an understanding of stomatal regulation. The use of molecular tools and techniques to manipulate chloroplast metabolism specifically in the guard cells are needed to elucidate signals associated with stomatal behaviour towards crop improvement. Ability to assemble multiple or complex DNA molecules containing large number of genetic elements is an essential part of genetic engineering and in order to understand the involvement of guard cell photosynthesis in stomatal function, genetic manipulation of photosynthetic enzymes specifically in guard cells is necessary. This study employed the manipulation and construction of the enzyme Sedoheptulose-1,7-Bisphosphatase (SBpase) by using the golden gate cloning technique and the bioinformatics system- geneious. Constructs were designed to alter expression of the SBPase gene in a cell specific manner driven by the guard cell promoter KST1 in the model plant Arabidopsis thaliana L. The construct design for the sense plasmid vectors allowed efficient assembly of multiple DNA fragments in a single reaction based on the type IIs restriction enzyme. The potentials of manipulating guard cell specific metabolism are therefore enormous and the increase or decrease of photosynthetic genes  could be assessed and their impacts on plant development documented accordingly.

2016 ◽  
Vol 193 ◽  
pp. 110-118 ◽  
Author(s):  
Jhon F. Sandoval ◽  
Chan Yul Yoo ◽  
Michael J. Gosney ◽  
Michael V. Mickelbart

Plant Science ◽  
2016 ◽  
Vol 251 ◽  
pp. 75-81 ◽  
Author(s):  
Takashi Kuromori ◽  
Miki Fujita ◽  
Kaoru Urano ◽  
Takanari Tanabata ◽  
Eriko Sugimoto ◽  
...  

Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 52
Author(s):  
Rajan Kapoor ◽  
Aniruddha Datta ◽  
Michael Thomson

Conventional breeding approaches that focus on yield under highly favorable nutrient conditions have resulted in reduced genetic and trait diversity in crops. Under the growing threat from climate change, the mining of novel genes in more resilient varieties can help dramatically improve trait improvement efforts. In this work, we propose the use of the joint graphical lasso for discovering genes responsible for desired phenotypic traits. We prove its efficiency by using gene expression data for wild type and delayed flowering mutants for the model plant. Arabidopsis thaliana shows that it recovers the mutation causing genes LNK1 and LNK2. Some novel interactions of these genes were also predicted. Observing the network level changes between two phenotypes can also help develop meaningful biological hypotheses regarding the novel functions of these genes. Now that this data analysis strategy has been validated in a model plant, it can be extended to crop plants to help identify the key genes for beneficial traits for crop improvement.


Author(s):  
Luying Sun ◽  
Fengbin Song ◽  
Xiancan Zhu ◽  
Shengqun Liu ◽  
Fulai Liu ◽  
...  

2016 ◽  
Vol 24 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Jonathan D.M. Helander ◽  
Aditya S. Vaidya ◽  
Sean R. Cutler

1974 ◽  
Vol 14 (1-2) ◽  
pp. 99-112 ◽  
Author(s):  
Richard W. Tinus

2008 ◽  
pp. 397-422 ◽  
Author(s):  
Ronald J. Ryel ◽  
Carolyn Y. Ivans ◽  
Michael S. Peek ◽  
A. Joshua Leffler

Sign in / Sign up

Export Citation Format

Share Document