scholarly journals Prognostics and Health Monitoring Methodologies and Approaches: A Review

Author(s):  
Hasan A. Bjaili ◽  
Ali M. Rushdi

Prognostics is a term that engineering borrowed from medicine to refer to the discipline concerned with the Remaining Useful Life (RUL) of an engineering device. This paper surveys the RUL prediction techniques and classifies them into four categories of model-based techniques,knowledge-based techniques, experience-based techniques, and data-driven techniques. A comparative review is given for the main features, prominent advantages, potential shortcomings and main subcategories for each of these categories. The survey is supported by an extensive listfor up-to-date references.

2020 ◽  
Vol 10 (24) ◽  
pp. 8977
Author(s):  
Pangun Park ◽  
Mingyu Jung ◽  
Piergiuseppe Di Marco

Predicting the remaining useful life (RUL) of mechanical bearings is a challenging industrial task since RUL can differ even for the same equipment due to many uncertainties such as operating condition, model inaccuracy, and sensory noise in various industrial applications. This paper proposes the RUL prediction method combining analytical model-based and data-driven approaches to forecast when a failure will occur based on the time series data of bearings. Feature importance ranking and principal component analysis construct a reliable and predictable health indicator from various statistical time, frequency, and time–frequency domain features of the observed signal. The adaptive sliding window method then optimizes the parameters of the degradation model based on the ridge regression of the time series sequence with the sliding window. The proposed adaptive scheme provides significant performance improvement in terms of the RUL estimation accuracy and robustness against the possible errors of the degradation model compared to the traditional Bayesian approaches.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2135
Author(s):  
Marcin Witczak ◽  
Marcin Mrugalski ◽  
Bogdan Lipiec

The paper presents a new method of predicting the remaining useful life of technical devices. The proposed soft computing approach bridges the gap between analytical and data-driven health prognostic approaches. Whilst the former ones are based on the classical exponential shape of degradation, the latter ones learn the degradation behavior from the observed historical data. As a result of the proposed fusion, a practical method for calculating components’ remaining useful life is proposed. Contrarily to the approaches presented in the literature, the proposed ensemble of analytical and data-driven approaches forms the uncertainty interval containing an expected remaining useful life. In particular, a Takagi–Sugeno multiple models-based framework is used as a data-driven approach while an exponential curve fitting on-line approach serves as an analytical one. Unlike conventional data-driven methods, the proposed approach is designed on the basis of the historical data that apart from learning is also applied to support the diagnostic decisions. Finally, the entire scheme is used to predict power Metal Oxide Field Effect Transistors’ (MOSFETs) health status. The status of the currently operating MOSFET is determined taking into consideration the knowledge obtained from the preceding MOSFETs, which went through the run-to-failure process. Finally, the proposed approach is validated with the application of real data obtained from the NASA Ames Prognostics Data Repository.


Author(s):  
Peng Ding ◽  
Hua Wang ◽  
Yongfen Dai

Diagnosing the failure or predicting the performance state of low-speed and heavy-load slewing bearings is a practical and effective method to reduce unexpected stoppage or optimize the maintenances. Many literatures focus on the performance prediction of small rolling bearings, while studies on slewing bearings' health evaluation are very rare. Among these rare studies, supervised or unsupervised data-driven models are often used alone, few researchers devote to remaining useful life (RUL) prediction using the joint application of two learning modes which could fully take diversity and complexity of slewing bearings' degradation and damage into consideration. Therefore, this paper proposes a clustering-based framework with aids of supervised models and multiple physical signals. Correlation analysis and principle component analysis (PCA)-based multiple sensitive features in time-domain are used to establish the performance recession indicators (PRIs) of torque, temperature, and vibration. Subsequently, these three indicators are divided into several parts representing different degradation periods via optimized self-organizing map (OSOM). Finally, corresponding data-driven life models of these degradation periods are generated. Experimental results indicate that multiple physical signals can effectively describe the degradation process. The proposed clustering-based framework is provided with a more accurate prediction of slewing bearings' RUL and well reflects the performance recession periods.


Author(s):  
Naipeng Li ◽  
Yaguo Lei ◽  
Nagi Gebraeel ◽  
Zhijian Wang ◽  
Xiao Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document