scholarly journals Formulation, Optimization and Evaluation of Ion Triggered Ophthalmic in Situ Gel

Author(s):  
Amol Tagalpallewar ◽  
Prajvita Rai ◽  
Satish Polshettiwar ◽  
Wani Manish ◽  
Akshay Baheti

Topical eye drop is the convenient and patient compliant route of drug administration, particularly for the treatment of anterior part diseases. Transport of drugs to the targeted ocular tissues is limited by various precorneal, active and stationary ocular barriers. The aim of developed, optimized and evaluated ion sensitive brimonidine tartrate in situ gel is patient compliance and maximum therapeutic activity in   the treatment of glaucoma. The effect of independent variables that are polymer concentration on dependent variables like the percent drug release, gelling time and viscosity was studied. The optimized formulation was further evaluated for ex-vivo study and histopathology study. Experimental study showed that optimized in situ gel formulation (F6) showed in vitro, ex vivo sustained release with polymer sodium alginate and hydroxypropyl methyl cellulose (HPMC) K4M. The optimized formulation F6 presented increased retention time upto 8 hours. The developed in situ gel can be a promising ophthalmic formulation to increase retention time of formulation and hence it will reduce the intra ocular pressure. The histopathology studies reveals the safety of prepared formulation. The stability studies revealed no significant change in the drug content and physical properties.

Author(s):  
INAYATHULLA . ◽  
PRAKASH GOUDANAVAR ◽  
MOHAMMAD ALI ◽  
SHAHID UD DIN WANI ◽  
NAGARAJA SREEHARSHA

Objective: The intent to prepare and evaluate Linezolid in-situ gel in the treatment of periodontitis. Methods: pH-sensitive in-situ gel was formed by the cold method using a varying concentration of the drug, carbopol 934P and hydroxypropyl methylcellulose (HPMC) and carbopol 934P and sodium carboxy methylcellulose (CMC) (1:1,1:1.5,1:2,1:2.5). An optimized batch was selected based on gelling time and gelling capacity. The prepared in-situ gels were evaluated for appearance, pH, gelling capacity, viscosity, in vitro release studies, rheological studies, and finally, was subjected to drug content estimation and antibacterial activity test. Results: FTIR study shows drug and physical mixture were compatible with each other. The rheology of formulated in-situ gel exhibited a pseudoplastic flow pattern. this may be because when polymer concentration was increased the prepared formulations become more viscous and in turn delayed the drug release and from the prepared formulation, LF4 and SF4 have polymer concentrations i. e, 0.9% carbopol and sodium CMC showed drug release up to 12 h. Conclusion: When carbopol is appropriately mixed with other suitable polymers it forms an in-situ gel-forming system that was substantiated by the property to transform into stiff gels when the pH is increased. The in-situ gel was prepared using a combination of carbopol-HPMC and carbopol-Na CMC The formulations LF1 to SF4 showed high linearity (R2 = 0.490-0.682), indicating that the drug was released from the prepared in-situ gel by the diffusion-controlled mechanism. Thus, the formulation of batches LF4 and SF4 containing carbopol: HPMC and carbopol: NaCMC in 1:2 ratios were considered as optimum formulation based on optimum viscosity, gelling capacity and to extend the in vitro drug release.


2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (12) ◽  
pp. 54-58
Author(s):  
P. H Patil ◽  
◽  
V. S Belgamwar ◽  
D. A Patel ◽  
S. J. Surana

The aim of present investigation was formulation and in-vitro evaluation of in situ gel for the nasal delivery of zolmitriptan. The in situ gel was prepared by temperature induced gelation technique using Pluronic with mucoadhesive polymer hydroxy propyl methyl cellulose K4 M in different ratios. The in situ gels so prepared were characterized and from the evaluation studies, batch PH2 was optimized and further subjected for stability studies at 30±2°C and 60±5% RH for 90 days. These formulations retained good stability at accelerated conditions and also did not show any remarkable damage to nasal mucosa in histopathological study. Owing to these properties it can be used as an effective delivery system for the nasal route.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (07) ◽  
pp. 33-35
Author(s):  
A Dubey ◽  
◽  
P Prabhu ◽  
N Nair ◽  
K Beladiya ◽  
...  

The aim of the present investigation was to develop a combination of timolol maleate and travoprost niosomal in situ gelling system for the treatment of glaucoma. Niosomes were prepared by thin film hydration technique using rotary flash evaporator. A 32 factorial design was utilized to study the effect of the molar ratio of Span 60 (X1) and cholesterol (X2) on vesicle size, drug entrapment efficiency and in vitro release study. On the basis of vesicle size, maximum entrapment efficiency and in vitro release of drug, best formulations were selected for the preparation of niosomal in situ gel (Drop). On the basis of gelling time and viscosity, optimized ratio of the polymers was selected for the desired preparation. Selected niosomal batches were dispersed in carbopol 940 and HPMC K4M polymer solution (combination IF6) to form in situ gel niosomal formulations (Drop). The gelling time of the niosomal in situ gel (NIF1) was found to be the best (+++) and the viscosity was found to be 1190 cP. Zeta potential, average size analysis, polydispersibility index value was found to be -45.1 mV, 256.5 nm, 0.228 respectively. In vitro drug release was found to be within the range of 50.23 ± 0.54 to 60.23 ± 0.33% over the period of 6 h. IOP lowering activity of best formulation (NIF1) showed more significant and sustained effect than the marketed eye drops. Best formulation (NIF1) was found to be stable, sterile, non irritant and isotonic. Hence niosomal in situ gelling combination system may have the potential of bringing better application than the conventional ocular therapy with improved ocular bioavailability and increased patient compliance.


2019 ◽  
Vol 46 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Pooja Jain ◽  
Chandra Prakash Jaiswal ◽  
Mohd. Aamir Mirza ◽  
Md. Khalid Anwer ◽  
Zeenat Iqbal
Keyword(s):  
Ex Vivo ◽  

2020 ◽  
Vol 10 (1) ◽  
pp. 24-37
Author(s):  
Deepali Verma ◽  
Shreya Kaul ◽  
Neha Jain ◽  
Upendra Nagaich

Introduction: In the present research, erythromycin estolate loaded in-situ gel was formulated and evaluated for blepharitis in order to improve its therapeutic efficacy, precorneal residence time of the system and to enhance the ocular bioavailability. Material and Methods: The developed formulation was characterized by several parameters viz. FTIR, clarity, pH, gelation temperature, rheological studies, drug content, in vitro drug release studies, transcorneal permeation studies, bioadhesion studies, isotonicity and stability studies. Results: The optimized formulation exhibited non-fickian release diffusion with a sustained release of drug 82.76 ± 0.94% up to 8h and drug content 93.64%. Isotonicity revealed that the formulation was isotonic in nature and there was no shrinkage and busting of cells. Bioadhesion study was performed to check the adherence of the prepared in situ gel to the corneal surface for 4h. Ex vivo transcorneal permeation was observed to be significantly higher when compared with market eye drops. Histopathological studies were conducted to confirm the presence of normal ocular surface tissues by maintaining their morphological structures without causing damage to the tissues. The formulation was nonirritant as confirmed by the HET-CAM test. Stability studies and accelerated stability studies were conducted for 13 weeks and 26 weeks respectively and formulations were analyzed for the visual appearance, pH, viscosity, gelling capacity, drug content and in vitro drug release and results showed no change in the formulations. Conclusion: The formulation was therapeutically efficacious, sterile, stable and provided controlled release over a period of time. The developed system could be a viable alternative to conventional eye drops for treatment of various ocular diseases.


2020 ◽  
Vol 11 (1) ◽  
pp. 7754-7764

Brinzolamide (BZ) is a carbonic anhydrase inhibitor with selectivity and affinity for the carbonic anhydrase type II isoenzyme that administrated topically as an ophthalmic suspension for reducing intraocular pressure. In this study, BZ in situ gel nanoemulsions (NEs) were developed and evaluated for transcorneal permeation via the bovine corneal membrane. The spontaneous emulsification method was employed to prepare BZ in situ gel NEs. Various physicochemical characteristics, including particle size, polydispersity index, pH, refractive index, and viscosity, were evaluated. Accelerated physical stability and in vitro drug release, as well as transcorneal permeation studies was performed by applying the Franz-type diffusion cells. Thermosensitive BZ in situ gel NEs with desired physicochemical features and sustained release profiles were designed in the current study. Optimized Formulations exhibited physical stability under different conditions. The transcorneal permeation of formulations was higher than that of suspension, especially for F3b formulation. According to the present in vitro and ex vivo evaluations, it is concluded that in situ gel NEs could be a topical administration of BZ as a suitable ocular drug delivery system.


Author(s):  
Hussein K. Alkufi ◽  
Hanan J. Kassab

     Objective: The purpose of this study to develop and optimize nasal mucoadhesive in situ gel IG of sumatriptan ST (serotonin agonist) to enhance nasal residence time for migraine management.      Method: Cold method was used to prepare ST nasal in-situ gel, using thermosensitive polymers (poloxamer 407  and/or poloxamer 188) with a mucoadhesive polymer (hyaluronic acid HA) which were examined for gelation temperature and gelation time, pH, drug content, gel strength, spreadability, mucoadhesive force determination, viscosity,  in-vitro drug release, and the selected formula was subjected to ex-vivo permeation study and histological evaluation of the sheep mucosal tissue after application.     Results: The results showed that the formula IG7 prepared from poloxamer 407(19%), poloxamer188 (4%) and HA (0.5%)   had an optimum gelation temperature (32.66±1.52°C), gel  strength (43.66± 1.52 sec),  mucoadhesive force (8067.93± 746.45dyne\cm2), in-vitro drug release (95.98%) over 6hr, ex-vivo permeation study release (89.6%)  during the 6 h. study with no  histological or pathological change in the nasal sheep tissue.     Conclusion: The ease of administration via a nasal drop of ST coupled with less frequent administration and prolong drug release, will enhance patient compliance.


2016 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
A. Maheswaran ◽  
J. Padmavathy ◽  
V. Nandhini ◽  
D. Saravanan ◽  
P. Angel

Objective: The objective of the present study was to formulate and evaluate the floating in-situ gelling system of diltiazem hydrochloride.Methods: Sodium alginate based diltiazem hydrochloride floating in situ gelling systems were prepared by dissolving hydroxyl propyl methyl cellulose (HPMC) in 25% of water, to which calcium carbonate and diltiazem hydrochloride were added with stirring to form, a proper and a homogenous dispersion of diltiazem hydrochloride. Meanwhile, 30% of water was heated to 60 ˚C on a hot plate to dissolve sodium alginate and cooled to 40 ˚C. The resulting solution was added to HPMC solution and mixed well. To 5% of water at 60 ˚C, sodium methyl paraben was added and dissolved and cooled to 40 ˚C and was added to the above mixture and mixed well. The volume was adjusted finally to 100% with distilled water. Prepared formulae were evaluated for physicochemical properties, drug content, pH, in vitro gelling capacity, in vitro buoyancy, viscosity, water uptake and in vitro drug release.Results: Formulation variables such as type and concentration of viscosity enhancing polymer (sodium alginate) and HPMC affected the formulation viscosity, gelling properties, floating behavior, and in vitro drug release. Formulation F5 and F6 showed the floating time of 5 min and more than 20 h respectively. A significant decrease in the rate and extent of the drug release was observed with the increase in polymer concentration in in-situ gelling preparation. Formulation F4, F5, F6 were shown to have extended drug release until the end of 7 h.Conclusion: The prepared in situ gelling formulations of diltiazem hydrochloride could float in the gastric conditions and released the drug in a sustained manner. The present formulation was non-irritant, easy to administer along with good retention properties, better patient compliant and with greater efficacy of the drug.


Sign in / Sign up

Export Citation Format

Share Document