scholarly journals FORMULATION AND EVALUATION OF IN-SITU GEL CONTAINING LINEZOLID IN THE TREATMENT OF PERIODONTITIS

Author(s):  
INAYATHULLA . ◽  
PRAKASH GOUDANAVAR ◽  
MOHAMMAD ALI ◽  
SHAHID UD DIN WANI ◽  
NAGARAJA SREEHARSHA

Objective: The intent to prepare and evaluate Linezolid in-situ gel in the treatment of periodontitis. Methods: pH-sensitive in-situ gel was formed by the cold method using a varying concentration of the drug, carbopol 934P and hydroxypropyl methylcellulose (HPMC) and carbopol 934P and sodium carboxy methylcellulose (CMC) (1:1,1:1.5,1:2,1:2.5). An optimized batch was selected based on gelling time and gelling capacity. The prepared in-situ gels were evaluated for appearance, pH, gelling capacity, viscosity, in vitro release studies, rheological studies, and finally, was subjected to drug content estimation and antibacterial activity test. Results: FTIR study shows drug and physical mixture were compatible with each other. The rheology of formulated in-situ gel exhibited a pseudoplastic flow pattern. this may be because when polymer concentration was increased the prepared formulations become more viscous and in turn delayed the drug release and from the prepared formulation, LF4 and SF4 have polymer concentrations i. e, 0.9% carbopol and sodium CMC showed drug release up to 12 h. Conclusion: When carbopol is appropriately mixed with other suitable polymers it forms an in-situ gel-forming system that was substantiated by the property to transform into stiff gels when the pH is increased. The in-situ gel was prepared using a combination of carbopol-HPMC and carbopol-Na CMC The formulations LF1 to SF4 showed high linearity (R2 = 0.490-0.682), indicating that the drug was released from the prepared in-situ gel by the diffusion-controlled mechanism. Thus, the formulation of batches LF4 and SF4 containing carbopol: HPMC and carbopol: NaCMC in 1:2 ratios were considered as optimum formulation based on optimum viscosity, gelling capacity and to extend the in vitro drug release.

2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (07) ◽  
pp. 33-35
Author(s):  
A Dubey ◽  
◽  
P Prabhu ◽  
N Nair ◽  
K Beladiya ◽  
...  

The aim of the present investigation was to develop a combination of timolol maleate and travoprost niosomal in situ gelling system for the treatment of glaucoma. Niosomes were prepared by thin film hydration technique using rotary flash evaporator. A 32 factorial design was utilized to study the effect of the molar ratio of Span 60 (X1) and cholesterol (X2) on vesicle size, drug entrapment efficiency and in vitro release study. On the basis of vesicle size, maximum entrapment efficiency and in vitro release of drug, best formulations were selected for the preparation of niosomal in situ gel (Drop). On the basis of gelling time and viscosity, optimized ratio of the polymers was selected for the desired preparation. Selected niosomal batches were dispersed in carbopol 940 and HPMC K4M polymer solution (combination IF6) to form in situ gel niosomal formulations (Drop). The gelling time of the niosomal in situ gel (NIF1) was found to be the best (+++) and the viscosity was found to be 1190 cP. Zeta potential, average size analysis, polydispersibility index value was found to be -45.1 mV, 256.5 nm, 0.228 respectively. In vitro drug release was found to be within the range of 50.23 ± 0.54 to 60.23 ± 0.33% over the period of 6 h. IOP lowering activity of best formulation (NIF1) showed more significant and sustained effect than the marketed eye drops. Best formulation (NIF1) was found to be stable, sterile, non irritant and isotonic. Hence niosomal in situ gelling combination system may have the potential of bringing better application than the conventional ocular therapy with improved ocular bioavailability and increased patient compliance.


2018 ◽  
Vol 10 (4) ◽  
pp. 153 ◽  
Author(s):  
Fadia Yassir Al-bazzaz ◽  
Myasar Al-kotaji

Objective: This work aims to formulate and evaluate an ophthalmic in-situ gel of ciprofloxacin hydrochloride (HCl) using poloxamer 407 (P407) as a gelling agent and hydroxypropyl methylcellulose (HPMC) as a viscosity modifier. The objective of this work was to prolong the contact time as the in-situ gel will be converted into a gel upon contact with the cul-de-sac. Methods: Ciprofloxacin HCl ophthalmic in-situ gel was prepared by utilizing (P407) as a temperature-dependent polymer while hydroxypropyl methylcellulose was used as a viscosity modifier. The system was evaluated for physical appearance, pH, drug content, sterility, irritancy and stability. In addition, gelation temperature and a viscosity at different shear rates and different temperatures were studied. The compatibility of the polymer with ciprofloxacin was studied by using fourier transform infrared spectroscopy (FTIR). The in vitro release of the drug was also evaluated and supported by a preliminary in vivo test.Results: The results showed that the prepared formulas were clear, with acceptable pH and the drug contents were within the acceptable limits. FTIR results detected no incompatibility between poloxamer 407 and ciprofloxacin HCl. Notably, the viscosity of the system showed a pseudoplastic behaviour where a reduction in viscosity upon increasing the shear rate was observed. The in vitro release study confirmed the prolongation of the release of the optimized formula (F6) up to 8 h. Upon application of F6 into eyes of rabbits there was no irritancy. In addition, in vivo elimination study showed a prolonged contact for the in-situ gel in comparison with the rapid clearance of eye drop. Stability study indicated the stability of the optimized formula (F6). Conclusion: The prepared optimized formula (F6) represents a successful, safe, stable and prolonged release in-situ gel formula of ciprofloxacin.


Author(s):  
INSAN SUNAN KURNIAWANSYAH ◽  
TAOFIK RUSDIANA ◽  
HURIYATUS TSANIYAH ◽  
HANDRIAN RAMOKO ◽  
HABIBAH A. WAHAB ◽  
...  

Objective: The objective of this study was to find the best base mixture composition (poloxamer 407 and HPMC) of chloramphenicol in situ gel formula based on in vitro property (Cumulative amount of drug release). Methods: The in vitro diffusion of chloramphenicol in situ gel study was carried out using franz diffusion cells to know the effect of the Critical Process Parameters (CPPs) as independent variables (poloxamer 407 and hydroxypropyl methylcellulose (HPMC)) on the Critical Quality Attribute (CQA) as dependent variable (cumulative amount of drug release) with 22 factorial design. Results: 22 factorial design of chloramphenicol in situ gel yielded 4 variations of poloxamer 407 and HPMC bases component in %w/v as follows, F1 (5:0.45), F2 (10:0.45) F3 (5:1) and F4 (10:1). The amount of drug release results from in vitro dissolution assay were 30.60% (F1), 45.64% (F2), 58.30% (F3), and 22.50%) (F4). Conclusion: Formula 3 (F3) was considered as the best formula component in terms of in vitro assay of chloramphenicol in situ gel with a desirability value of 0.58.


2020 ◽  
Author(s):  
Anil Thakur ◽  
Sourabh Jain ◽  
Anjali Pant ◽  
Akanksha Sharma ◽  
Rajiv Kumar ◽  
...  

AbstractAzithromycin (AZM), a macrolide antibiotic used for the treatment of Chlamydial conjunctivitis, is less effective for the treatment of this disease due to its poor bioavailability (38%). Various alternatives have been developed for improving the physico-chemical properties (i.e., solubility) of the AZM without much success. To overcome the problems associated with AZM, an inclusion complex employing a modified cyclodextrin i.e., sulfobutylether-β-cyclodextrin (SBE-β-CD) was prepared and characterized by phase solubility studies, pXRD and FTIR techniques. The results portrayed the formation of the inclusion complex of AZM with sulfobutylether β-cyclodextrin (SBE-β-CD) in 1:2 molar stoichiometric ratios. This inclusion complex was later incorporated into a polymer matrix to prepare an in situ gel. Various combinations of carbopol 934P and hydroxypropyl methylcellulose (HPMC K4M) polymers were used and evaluated by rheological and in vitro drug release studies. The optimized formulation (F4), containing carbopol 934P 0.2% (w/v) and HPMC K4M 0.2% (w/v), was evaluated for clarity, pH, gelling capacity, drug content, rheological properties, in vitro drug release pattern, ocular irritation test and antimicrobial efficacy. Finally, owing to the improved antimicrobial efficacy and increased residence time, AZM:SBE-β-CD in situ gel was found to be a promising formulation for the efficient treatment of bacterial ocular disease.


Author(s):  
Vipul P Patel ◽  
V. V Pande ◽  
Khedkar P. V.

The main purpose of this study was to beat issues related with lachrymal seepage by eye drops, obscured vision with semi solid formulation, distinctive framework was joined together as niosomes and in-situ gel by fusing niosomes in-situ gel formulation, so it is anything but difficult to controlled and hold at the site for drag out timeframe. The Dexamethasone sodium phosphate, a glucocorticosteroid anti-inflammatory drug utilized as a part of treatment of eye hypersensitive condition, keratitis, after eye surgery, post cataract treatment. Niosomes containing Dexamethasone sodium phosphate definitions were prepared by solvent injection technique using cholesterol alongside different surfactants proportions. Prepared Niosomal preparations were fused in-situ gel formulation plan by scattering the Niosomes in solution of carbomer 974 P (0.2-0.6% w/v) and Hydroxypropyl-methylcellulose (HPMC) K4M (0.5-0.8% w/v). Prepared formulations were assessed for their vesicle measure, entanglement proficiency, in-vitro sedate discharge, thickness, in-vitro gelation study and so on. From the results it can be concluded that by utilizing cholesterol: Tween-80 (1:2) proportion, particle size of Niosomes was B4 was 368.7 nm with 93.15% drug entrapment efficiency. In-vitro drug release kinetics from Niosomal in-situ gel definition demonstrates that 98.42% drug release in 6 hrs with the utilization of 0.8% w/v of HPMC K4M and 0.6% w/v of Carbomer 974 P. In conclusion, the Niosomal in-situ gel is a practical contrasting option to routine eye drops due to excellence of its capacity to improve bioavailability through its more drawn out residence time and capacity to sustain the drug release.  


Author(s):  
Panna Thapa ◽  
Howard NE Stevens ◽  
Alan J Baillie

In vitro release of nicotine hydrogen tartrate (NHT) into phosphate buffer saline (PBS), pH 7.4 at 37°C was studied in a diffusion cell, which, with a minimal dissolution volume on the donor side, was intended to mimic the low hydration environment of the nasal mucosa. Lyophilisates prepared from different concentrations (0.25, 0.5, 1, 2 & 3% w/w) of Methocel K4MP solution and K100LVP, K15MP, K100MP solutions (1 & 2%) containing NHT were placed on the diffusion cell membrane which was maintained just in contact with the constantly agitated liquid phase of the receptor compartment. Samples were withdrawn at regular time intervals from the receptor compartment, replaced by fresh medium and analysed spectrophotometrically at 260nm after appropriate dilution. As controls, nicotine release profiles from NHT powder & aqueous solution, Methocel K solutions, and simple powder blends of K4MP were also measured. The nicotine release was dependent on the concentration of Methocel K polymer, whether the donor side of the cell was presented with a solution or lyophilisate of NHT in polymer. Nicotine release decreased with increasing polymer concentration (t50% = 25 min and 75 min for lyophilisate prepared from 1% and 3% w/w K4MP respectively). However at any polymer concentration, nicotine release was faster from solution than from lyophilisate. The difference in nicotine release between solution and lyophilisate became more prominent at higher polymer concentration. Interestingly, nicotine release was independent of Methocel K molecular weight. In vitro nicotine release took place by anomalous diffusion. Keywords: In vitro drug release; lyophilisation; nasal drug delivery; hydroxypropyl methylcellulose (HPMC), nicotine. DOI: 10.3126/kuset.v5i1.2848 Kathmandu University Journal of Science, Engineering and Technology Vol.5, No.1, January 2009, pp 71-86


Author(s):  
Amol Tagalpallewar ◽  
Prajvita Rai ◽  
Satish Polshettiwar ◽  
Wani Manish ◽  
Akshay Baheti

Topical eye drop is the convenient and patient compliant route of drug administration, particularly for the treatment of anterior part diseases. Transport of drugs to the targeted ocular tissues is limited by various precorneal, active and stationary ocular barriers. The aim of developed, optimized and evaluated ion sensitive brimonidine tartrate in situ gel is patient compliance and maximum therapeutic activity in   the treatment of glaucoma. The effect of independent variables that are polymer concentration on dependent variables like the percent drug release, gelling time and viscosity was studied. The optimized formulation was further evaluated for ex-vivo study and histopathology study. Experimental study showed that optimized in situ gel formulation (F6) showed in vitro, ex vivo sustained release with polymer sodium alginate and hydroxypropyl methyl cellulose (HPMC) K4M. The optimized formulation F6 presented increased retention time upto 8 hours. The developed in situ gel can be a promising ophthalmic formulation to increase retention time of formulation and hence it will reduce the intra ocular pressure. The histopathology studies reveals the safety of prepared formulation. The stability studies revealed no significant change in the drug content and physical properties.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


Author(s):  
Vazir Ashfaq Ahmed ◽  
Divakar Goli

Objective: The goal of this study was to develop and characterize an ion-activated in situ gel-forming brimonidine tartrate, solution eye drops containing xanthan gum as a mucoadhesive polymer.Method: Sol-gel formulation was prepared using gellan gum as an ion-activated gel-forming polymer, xanthan gum as mucoadhesive agent, and hydroxypropyl methyl cellulose (HPMC E50LV) as release retardant polymer. Phenylethyl alcohol is used as preservatives in borate buffer. The 23 factorial design was employed to optimize the formulation considering the concentration of gelrite, xanthan gum and HPMC as independent variables, gelation time, gel strength, and mucoadhesive force (N). Gelation time , gel strength, mucoadhesive force (N), viscosity (cP) and in vitro percentage drug release were chosen as dependent variables. The formulation was characteristics for pH, clarity, isotonicity, sterility, rheological behavior, and in vitro drug release, ocular irritation, and ocular visualization.Result: Based on desirability index of responses, the formulation containing a concentration of gelrite (0.4%), xanthan gum (0.21%), and HPMC (HPMC E50 (0.24%) was found to be the optimized formulation concentration developed by 23 factorial design. The solution eye drops resulted in an in situ phase change to gel-state when mixed with simulated tear fluid. The gel formation was also confirmed by viscoelastic measurements. Drug release from the gel followed non-fickian mechanism with 88% of drug released in 10 h, thus increased the residence time of the drug.Conclusion: An in situ gelling system is a valuable alternative to the conventional system with added benefits of sustained drug release which may ultimately result in improved patient compliance.


Sign in / Sign up

Export Citation Format

Share Document