scholarly journals Development and Evaluation of Floating Microspheres of Sumatriptan Succinate using Ethyl Cellulose and Mucilage Extracted from Vigna Mungo

Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (01) ◽  
pp. 20-27
Author(s):  
H. B Samal ◽  
I. J. Das ◽  
P. N. Murthy ◽  

The present study involves the design and characterization of floating microspheres with gabapentin as model drug for prolongation of gastric residence time. Gabapentin floating microspheres were prepared by o/w/o emulsification solvent diffusion technique using ethyl cellulose as the rate controlling polymer at various concentrations. The shape and surface morphology of microspheres were characterized by optical and scanning electron microscopy. Absence of drug-polymer interaction was confirmed by FTIR analysis. In vitro drug release studies were performed and drug release kinetics was evaluated using the linear regression method. Effects of polymer concentration, solvent composition, particle size, drug entrapment efficiency and drug release were also studied. The synthesized microspheres exhibited prolonged drug release (> 12 h) and remained buoyant for > 24 h. The drug entrapment efficiency was in the range 46-70 %. At higher polymer concentration, the average particle size was increased and the drug release rate decreased. In vitro studies revealed diffusion-controlled drug release from the microspheres. Among all the formulations (F1-F5), F4 is the optimized formulation.


Author(s):  
Sanaa El Gizaway ◽  
Maha Fadel ◽  
Basma Mourad ◽  
Fatma El-zahraa Abd Elnaby

Objective: The main aim of this study was to design and characterise betamethasone di-propionate loaded transfersomes (BD-T); as a topical formulation for the treatment of localized plaque psoriasis.Methods: A full factorial design (23) was applied to study the effects of three independent variables: drug content, type of surfactants and surfactant contents on particle size (PS), entrapment efficiency (EE %), zeta potential (ZP), polydispersity index (PI) and drug release profiles. The optimized BD-T was formulated as a hydrogel using 5% sodium carboxymethyl cellulose. The gel was characterized for viscosity, drug content, in vitro drug release and stability. A comparative clinical study was performed on 20 patients with psoriasis to investigate the effect of BD-T gel and the marketed betamethasone dipropionate (BD) cream.Results: The optimized BD-T formulation containing 50 mg betamethasone dipropionate (BD) and 5 mg tween 80 showed spherical unilamellar vesicles with an average particle size of 242.80, % EE of 90.19%, ZP of-15.00 mV, PI of 0.407 and K0 of 4.290 mg/hr. The formulation showed good stability at 4 °C and 25 °C for 6 mo. The results revealed significant clinical improvement and a significant increase in safety and tolerability with BD-T gel compared with BD cream.Conclusion: As a conclusion, BD-T was found to be more effective, safe and tolerable for the treatment of psoriasis compared with the marketed product.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (08) ◽  
pp. 22-27
Author(s):  
S. G Bandbe ◽  
◽  
K Dixit ◽  
G Laghate ◽  
R. B. Athawale

Ondansetron hydrochloride (OND) is indicated for prevention of nausea and vomiting during chemotherapy. Due to its insolubility in intestinal pH, it is absorbed only in the stomach. In the present study, an attempt was made to increase gastric retention time of ondansetron hydrochloride by preparing its floating microspheres by solvent evaporation method with ethyl cellulose (EC) and hydroxypropylmethylcellulose (HPMC). Microspheres were characterized for percentage yield, particle size, surface morphology, floating behaviour, entrapment efficiency and in vitro release. Polymer ratio and stirring speed seemed to have significant impact on size, entrapment efficiency, floating time and release profile. Hydroxypropylmethylcellulose: ethyl cellulose in the ratio 1: 3, gave most suitable buoyancy and drug release. By increasing polymer concentration, the mean particle size of microspheres increased while drug release rate decreased. Developed formulation of ondansetron hydrochloride can be used for prolonging its retention in the stomach for at least 12 hrs, thereby improving bioavailability and patient compliance.


2020 ◽  
Vol 11 (2) ◽  
pp. 2445-2457
Author(s):  
Prashant Singh ◽  
Ritu M. Gilgotra

The purpose of this investigation is to establish anti-diabetic activity relationship as well as efficiency of formulated guar gum matrix tablet using microencapsulated glibenclamide (GBLD). This research is an approach to utilize pharmaceutical excipients as an alternative hypoglycemic agent. In order to execute the objective, GBLD microspheres were formulated by emulsion solvent evaporation method using dichloromethane and methanol as solvent system which was transferred drop after drop into encapsulating medium i.e. liquid paraffin light. The formulated microspheres were exposed to various assessment parameters like drug entrapment efficiency, % yield, particle size distribution, and average particle size, the morphology of surface, dissolution study (in vitro) and micromeritics of prepared microspheres. By using these microspheres, matrix tablets were then prepared which were further evaluated for weight variation, thickness, friability, hardness, drug content, stability study, disintegration time, swelling index and dissolution (in vitro) studies were carefully carried out. Betwixt all the formulated microspheres GEM3 was found to best optimized with respect to evaluation parameters. The results obtained were found within the desired ranges where % yield 93.75%, drug entrapment efficiency 95.627% at 12th hour, and the average particle size was observed to be 179.4±0.12 µm. Then, by using the method of direct compression matrix tablets of optimized microspheres GEM3 were prepared and drug release (in vitro) was performed. The obtained results of performed parameters on matrix tableted microspheres were within the acceptable range according to IP guidelines. Out of all formulated matrix tableted microspheres, formulation GMT4 and GMT7 showed an in-vitro % drug release of 95.257 and 94.404 at 12th hour in pH 7.4 phosphate buffer. 


2018 ◽  
Vol 8 (5) ◽  
pp. 190-199
Author(s):  
A K Sachan ◽  
A Gupta ◽  
K Kumari ◽  
A Ansari

The work investigated the design and evaluation of microspheres of Nitazoxanide by Ionotropic gelation technique met. 32 Factorial designs were used and concentration of polymer carbopol-934 (X1) and Ethyl cellulose (X2) were selected as the independent variables. The surface morphology study by SEM indicated that microspheres were spherical with smooth surface. There was no interaction between the drug and polymers, as studied by FTIR study. The prepared microspheres were characterized by entrapment efficiency, particle size micromeritic properties. It was observed that on increasing polymer concentration of formulations, % yield, the entrapment efficiency and particle size were increased whereas % drug release decreased. The In Vitro release study was done using U.S.P. dissolution rate basket type apparatus in phosphate buffer pH 7.4 for 10 hr. It shows that on increasing polymer concentration the drug release of all formulations was gradually decreased. In Vitro mucoadhesion study depicts that as the polymer concentration increased, mucoadhesive nature of the formulation was also increased. The microspheres of NTZ (formulation F9) showed best results due to highest drug entrapment efficiency (85.50%), and percentage drug release after 10.0 hr. was 50.25%. The rate of release followed First order kinetics. The microspheres exhibits good mucoadhesive properties in  in- vitro wash-off test at pH 7.4 (Intestinal pH) than pH 1.2 (gastric pH),because the drug was completely absorbed in Gastrointestinal tract, Therefore, it can be concluded that Nitazoxanide Loaded algino-carbopol-934 microspheres can be formulated for sustained drug delivery of Nitazoxanide used in Chronic Hipatitis-C. Keywords: Mucoadhesive microspheres, Nitazoxanide, Carbopol-934, Ethyl cellulose, Sodium Alginate, Factorial design.


2020 ◽  
Vol 10 ◽  
pp. 184798042091151 ◽  
Author(s):  
Ping Song ◽  
Wuchen Du ◽  
Wanzhen Li ◽  
Longbao Zhu ◽  
Weiwei Zhang ◽  
...  

Polymerized polypeptide nanomicelles have attracted much attention as novel drug carriers because of their good biocompatibility and degradability. To prepare doxorubicin (DOX)-loaded nanomicelles, an amphiphilic peptide, FFHFFH-KKGRGD (P12), was synthesized by solid-phase synthesis, and the physicochemical and drug-release properties, as well as the cytotoxicity of the nanomicelles, were evaluated in vitro. The P12-DOX polymer micelles were prepared by dialysis. The morphology and particle size were characterized by transmission electron microscopy and dynamic light scattering. The critical micelle concentration (CMC) of the polymer was determined by the probe method, and the drug-release characteristics of the micelles were studied by dynamic dialysis. The cytotoxicity and uptake of the P12-DOX micelles were evaluated against mouse breast cancer cells (4T1) and human umbilical vein endothelial cells. The peptide polymer micelles containing DOX were uniformly sized and had a spherical core–shell structure with an average particle size of 128.6 nm. The CMC of the polymer was low (0.0357 mg/mL). The in vitro release of DOX from the micelles is slow and is consistent with first-order kinetics. The copolymer micelles of the P12 polypeptide and DOX can be used as nanoscale spherical carriers of hydrophobic drugs and have broad applicability.


2020 ◽  
Vol 17 (2) ◽  
pp. 159-173
Author(s):  
Qinqin Liu ◽  
Hongmei Xia ◽  
Yinxiang Xu ◽  
Yongfeng Cheng ◽  
Zhiqing Cheng

Objective: Paeonol is a phenolic compounce that is volatile. In order to decrease its volatility and achieve controlled release, paeonol-loaded liposome in carbomer hydrogel was prepared by coating with soybean phospholipid via ethanol injection method and then added into the carbomer hydrogel. Methods: The quality of paeonol-loaded liposome in carbomer hydrogel was evaluated by the degree of roundness, particle size distribution, zeta potential, entrapment efficiency (filtration method and chitosan neutralization method), viscosity, infrared spectrum, etc. Furthermore, the diffusion from paeonolloaded liposome in hydrogel was studied in vitro. Results: The results showed that the average particle size of paeonol-loaded liposome was about 401 nm, the potential was -17.8 mV, and the entrapment efficiency was above 45%. The viscosity of paeonol- loaded liposome in hydrogel was 23.972×10-3 Pa*s, and the diffusion rate from paeonol-loaded liposome in hydrogel in vitro was obviously slower than that from the other paeonol preparations. Conclusion: The conclusions could be drawn that paeonol-loaded liposome in hydrogel was a kind of novel preparation, and its diffusion in vitro had obvious controlled-release characteristics, which further proved that it might improve the bioavailability of paeonol.


2021 ◽  
Author(s):  
Cheran K ◽  
Udaykumar B Bolmal ◽  
Archana S Patil ◽  
Umashri A Kokatanur ◽  
Rajashree S Masareddy

Abstract Background: The goal of this study was to develop a gastro retentive floating drug delivery system that would improve site specific activity, patient compliance and therapeutic efficacy.Methodology: Floating microspheres of Miglitol were formulated by double emulsion method using ethyl cellulose and eudragit E100 different weight ratio and PVA as an emulsifier. It has been prepared with respect quantity of polymer concentration and stirring speed to evaluate for % buoyancy, drug entrapment efficiency, particle size drug release rate. Result: The percent of buoyancy, drug entrapment efficiency, particle size, and percentage yield were increased with increase the polymer mixture concentration. Among all formulation batches, F6 showed acceptable results drug entrapment efficiency (86.57%) and buoyancy (94.25%). F10 formulation was prepared to check the predicted and actual factors and compared with optimized formulation F6. The drug release was increased as the polymer concentration was decrease. The kinetic model zero order had the highest regression coefficient value, it was described as a sustained release dosage form. According to ICH guideline accelerated stability studies of F6 and F10 formulations were conducted for 90 days. After 90 days buoyancy and in vitro drug release was performed and the results were F6 and F10 buoyancy was found to be 88.21%, 87.22% and in vitro drug release was found to be 62.87%, 63.51%. Conclusion: The present study, showed compatibility of drug with polymers by FTIR in formulation. Floating microsphere of Miglitol was prepared by double emulsion technique. The F6 Miglitol floating microsphere was optimized formulation demonstrated with excellent drug entrapment performance (86.57%), good floating behaviour (94.25%), and the largest particle size (670µm). The present study concludes that floating based gastro retentive delivery system of Miglitol microspheres has a safe and effective drug delivery system with increased therapeutic efficacy and a longer duration of action.


Author(s):  
Kiranmai Mandava ◽  
Kruthika Lalit ◽  
Venu Madhav Katla

The objective of the study was to develop silver nanoparticles loaded with Ketoprofen (Ag-KP) for increasing the drug solubility and thereby its bioavailability. Ag-KP were prepared by the solvent evaporation method using β-Cyclodextrin as a biodegradable polymer. Different formulations of Ag-KP were characterized for the drug entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), particle size analysis, X-ray diffraction studies (XRD), scanning electron microscopy (SEM) and  in-vitro dissolution studies. The optimized formulation (F6) has shown an average particle size of 167.8 ± 3.46 nm,zeta potential of -23.7 ± 1.46 mV. FTIR revealed that the drug showed good excipient compatibility. XRD studies showed that the drug has changed from crystalline to amorphous state. In all formulations, F6 formulation (optimized) exhibited high drug entrapment efficiency (∼93%). SEM studies indicated the shape of Ag-KP was roughly spherical with smooth surface. In vitro dissolution studies showed that Ag-KP from F6 formulation was 94.3 ± 4.9% but for the marketed formulation, it is only 84.6 ± 3.7% in 12 hours and F6 was found to be found stable for three months at both refrigerated and room temperature (RT).


Author(s):  
Pankaj P Nerker ◽  
Hitendra Mahajan ◽  
Sagar Deore ◽  
Pradyumn Ige

Nanosuspensions provide convenient formulations for improving the bioavailability and drug delivery. The objective of the investigation was to develop stable nanosuspension formulation of ramipril, with minimum surfactant concentration that could improve its solubility, stability and oral bioavailability. Ramipril is a potent antihypertensive drug, which act by inhibiting the angiotensin-converting enzyme. Nanosuspension was developed by antisolvent precipitation followed by high-pressure homogenization using hydrophilic polymers such as HPMC E5, HPMC E15, PVP K30, PVP K25, and PVA. The resulting nanosuspension was transformed into dry powder by freeze-drying process. Among all five formulations a formulation was choosen on the basis of results obtained from comparative study between different polymers based nanosuspension formulation of ramipril. The nanosuspension prepared was then evaluated for particle size, polydispesivity index, zeta potential, entrapment efficiency, saturated solubility study, scanning electron microscopy, differential scanning colorometry, and X ray diffraction. The combination of soya lecithin and pluronic F-68 as stabilizers yield nanosuspension with the smallest average particle size. The formulation of ramipril based on HPMC E 15 (Formulation B) shown enhanced dissolution rate. In which more than 60% of the drug was dissolved in the first 20 min compared to less than 25% of the pure drug within the same time period. The increase in the in vitro dissolution rate, nano size may favourably affect bioavailability.


Sign in / Sign up

Export Citation Format

Share Document