DEVELOPMENT OF GASTRO-RETENTIVE FLOATING MICROSPHERES OF ONDANSETRON HYDROCHLORIDE

INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (08) ◽  
pp. 22-27
Author(s):  
S. G Bandbe ◽  
◽  
K Dixit ◽  
G Laghate ◽  
R. B. Athawale

Ondansetron hydrochloride (OND) is indicated for prevention of nausea and vomiting during chemotherapy. Due to its insolubility in intestinal pH, it is absorbed only in the stomach. In the present study, an attempt was made to increase gastric retention time of ondansetron hydrochloride by preparing its floating microspheres by solvent evaporation method with ethyl cellulose (EC) and hydroxypropylmethylcellulose (HPMC). Microspheres were characterized for percentage yield, particle size, surface morphology, floating behaviour, entrapment efficiency and in vitro release. Polymer ratio and stirring speed seemed to have significant impact on size, entrapment efficiency, floating time and release profile. Hydroxypropylmethylcellulose: ethyl cellulose in the ratio 1: 3, gave most suitable buoyancy and drug release. By increasing polymer concentration, the mean particle size of microspheres increased while drug release rate decreased. Developed formulation of ondansetron hydrochloride can be used for prolonging its retention in the stomach for at least 12 hrs, thereby improving bioavailability and patient compliance.

2018 ◽  
Vol 8 (5) ◽  
pp. 190-199
Author(s):  
A K Sachan ◽  
A Gupta ◽  
K Kumari ◽  
A Ansari

The work investigated the design and evaluation of microspheres of Nitazoxanide by Ionotropic gelation technique met. 32 Factorial designs were used and concentration of polymer carbopol-934 (X1) and Ethyl cellulose (X2) were selected as the independent variables. The surface morphology study by SEM indicated that microspheres were spherical with smooth surface. There was no interaction between the drug and polymers, as studied by FTIR study. The prepared microspheres were characterized by entrapment efficiency, particle size micromeritic properties. It was observed that on increasing polymer concentration of formulations, % yield, the entrapment efficiency and particle size were increased whereas % drug release decreased. The In Vitro release study was done using U.S.P. dissolution rate basket type apparatus in phosphate buffer pH 7.4 for 10 hr. It shows that on increasing polymer concentration the drug release of all formulations was gradually decreased. In Vitro mucoadhesion study depicts that as the polymer concentration increased, mucoadhesive nature of the formulation was also increased. The microspheres of NTZ (formulation F9) showed best results due to highest drug entrapment efficiency (85.50%), and percentage drug release after 10.0 hr. was 50.25%. The rate of release followed First order kinetics. The microspheres exhibits good mucoadhesive properties in  in- vitro wash-off test at pH 7.4 (Intestinal pH) than pH 1.2 (gastric pH),because the drug was completely absorbed in Gastrointestinal tract, Therefore, it can be concluded that Nitazoxanide Loaded algino-carbopol-934 microspheres can be formulated for sustained drug delivery of Nitazoxanide used in Chronic Hipatitis-C. Keywords: Mucoadhesive microspheres, Nitazoxanide, Carbopol-934, Ethyl cellulose, Sodium Alginate, Factorial design.


Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.


2021 ◽  
Author(s):  
Cheran K ◽  
Udaykumar B Bolmal ◽  
Archana S Patil ◽  
Umashri A Kokatanur ◽  
Rajashree S Masareddy

Abstract Background: The goal of this study was to develop a gastro retentive floating drug delivery system that would improve site specific activity, patient compliance and therapeutic efficacy.Methodology: Floating microspheres of Miglitol were formulated by double emulsion method using ethyl cellulose and eudragit E100 different weight ratio and PVA as an emulsifier. It has been prepared with respect quantity of polymer concentration and stirring speed to evaluate for % buoyancy, drug entrapment efficiency, particle size drug release rate. Result: The percent of buoyancy, drug entrapment efficiency, particle size, and percentage yield were increased with increase the polymer mixture concentration. Among all formulation batches, F6 showed acceptable results drug entrapment efficiency (86.57%) and buoyancy (94.25%). F10 formulation was prepared to check the predicted and actual factors and compared with optimized formulation F6. The drug release was increased as the polymer concentration was decrease. The kinetic model zero order had the highest regression coefficient value, it was described as a sustained release dosage form. According to ICH guideline accelerated stability studies of F6 and F10 formulations were conducted for 90 days. After 90 days buoyancy and in vitro drug release was performed and the results were F6 and F10 buoyancy was found to be 88.21%, 87.22% and in vitro drug release was found to be 62.87%, 63.51%. Conclusion: The present study, showed compatibility of drug with polymers by FTIR in formulation. Floating microsphere of Miglitol was prepared by double emulsion technique. The F6 Miglitol floating microsphere was optimized formulation demonstrated with excellent drug entrapment performance (86.57%), good floating behaviour (94.25%), and the largest particle size (670µm). The present study concludes that floating based gastro retentive delivery system of Miglitol microspheres has a safe and effective drug delivery system with increased therapeutic efficacy and a longer duration of action.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sara Salatin ◽  
Mitra Jelvehgari

Background: Background: Metformin hydrochloride (MH) is an oral anti-hyperglycemic agent belonging to the biguanide class of drugs. Objective: The present study involves the formulation and evaluation of gastro-retentive floating microparticles containing MH as a model drug for the prolongation of absorption time. Methods: Three levels of a three-factor, Box-Behnken design were used to evaluate the critical formulation variables. Microparticles were prepared using a water-in-oil-in-water double-emulsion solvent evaporation method and examined in terms of production yield, particle size, entrapment efficiency, floating ability, morphology, FTIR (Fourier transform infrared spectroscopy), and in vitro drug release. Results: The optimum conditions for preparing MH microparticles were predicted to be the content of ethyl cellulose content (150 mg), poly (ε-caprolactone) (150 mg), and polyvinyl alcohol (1 %w/v). The optimized MH microparticles were found to be spherical with a mean size of 350.2 µm. Entrapment efficiency was 58.62% for microparticles. 63.94% of microparticles showed floating properties. The FTIR analysis confirmed no chemical linkage between microparticle components. In vitro release study showed a controlled release for up to 8h. Conclusion: These results demonstrated that MH microparticles, as a drug delivery system, may be useful to achieve a controlled drug release profile suitable for oral administration and may help to reduce the dose of drug and to improve patient compliance.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Charu Bharti ◽  
Upendra Nagaich ◽  
Jaya Pandey ◽  
Suman Jain ◽  
Neha Jain

Abstract Background The current investigation is focused on the development and characterization of Eudragit S100 coated nitazoxanide-loaded microbeads as colon-targeted system utilizing central composite design (CCD) and desirability function. The study initiated with the selection of a BCS class II drug nitazoxanide and its preformulation screening with excipients, selection of polymer and identification of concentration for CCD, selection of optimized formulation based on desirability function, and in vitro release studies in simulated gastric and colonic media and stability studies. A two-factor, three-level CCD was employed with two independent variables, i.e. X1 (chitosan % w/v) and X2 (sodium tripolyphosphate % w/v), and three dependent variables, i.e. Y1 (particle size in micrometres), Y2 (percentage yield) and Y3 (percent entrapment efficiency), were chosen. Additionally, surface morphology, mucoadhesion and in vitro drug release studies were also conducted. Result Chitosan concentration showing maximum entrapment and optimum particle size was selected to formulate chitosan beads. The polynomial equation and model graphs obtained from the Design-Expert were utilized to examine the effect of independent variables on responses. The effect of formulation composition was found to be significant (p ˂ 0.05). Based on the desirability function, the optimized formulation was found to have 910.14 μm ± 1.03 particle size, 91.84% ± 0.64 percentage yield and 84.75% ± 0.38 entrapment efficiency with a desirability of 0.961. Furthermore, the formulations were characterized for in vitro drug release in simulated colonic media (2% rat caecal content) and have shown a sustained release of ∼ 92% up to 24 h as compared to in vitro release in simulated gastric fluid. Conclusion The possibility of formulation in enhancing percentage yield and entrapment efficiency of nitazoxanide and the utilization of CCD helps to effectively integrate nitazoxanide microbeads into a potential pharmaceutical dosage form for sustained release.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


2016 ◽  
Vol 1 (3) ◽  
pp. 396-405
Author(s):  
Johura Ansary ◽  
Amit Kumar Chaurasiya ◽  
KM Bashirul Huq

The purpose of the present investigation was the preparation and evaluation of gastro-retentive floating drug delivery system for anti-diabetic drug metformin hydrochloride that would retain the drug in stomach and continuously release the drug in controlled manner up to a predetermined time leading to improve bioavailability. The microspheres were prepared by oil-in-oil emulsion solvent evaporation technique using ethyl cellulose, methacrylic acid copolymer (Eudragit RS100, Eudragit RSPO and Eudragit RLPO). The dried floating microspheres were evaluated for percentage yield (%), actul drug content (%), drug entrapment efficiency, floating behavior, scanning electron microscopy and in vitro drug release studies. The microspheres were found spherical, porous and free flowing with a size range. Compatibility studies were performed by fourier transform infra-redand (FTIR) and differential thermal analysis (DTA) techniques. The DTA and FTIR data stated that drug and excipient were compatible. In-vitro release kinetics were studied in different mathematical release models following the zero order, Higuchi and Korsemeyer to find out the linear relationship and release rate of drug. The drug might be released by both diffusion and erosion as the correlation coefficient (R2) best fitted with Korsemeyer model and release exponent (n) was 0.45-0.89. In most cases good in vitro floating behavior was observed and a broad variety of drug release pattern was achieved by variation of the polymer which optimized to match target release profile. The developed floating microspheres of metformin hydrochloride may be used in clinic for prolonged drug release in stomach for at least 8 hrs, thereby improving the bioavailability and patient compliance.Asian J. Med. Biol. Res. December 2015, 1(3): 396-405


Author(s):  
DIVYA SANGANABHATLA ◽  
R. SHYAM SUNDER

Objective: The present paper describes the development and evaluation of a Novel Finasteride (FSD) nanogel topical delivery for the treatment of Androgenetic Alopecia. Nano-based topical formulation was chosen to enhance the solubility, permeability, biocompatibility of drug and to overcome the problems associated with the oral delivery of finasteride. Methods: Various trails batches were prepared by using probe sonication method. Based on stability studies and particle size, NP4 trail was optimized which exhibited a spherical shape with a mean diameter of 113.80±0.72, the polydispersity of 0.28±0.01, zeta potential of-25.2 mV, drug entrapment efficiency of 92.67±0.47 %, and drug loading of 6.15±0.02 %. Storage stability studies demonstrated that the particle size and entrapment efficiency were not changed during 3 mo both at 4 °C and room temperature. Finasteride (FSD) NLCs were characterized for particle size by scanning electron microscope (SEM), chemical state by X-Ray diffraction (XRD), physical stability by centrifugation and thermodynamic stability by Freeze-thaw method. These prepared nanoparticles were transformed into topical nanogel and further evaluated. Results: Among the different trails, C2 trail of NLC gel has shown excellent gelling capacity, clear appearance, good viscosity characteristics and was selected for further evaluation studies. Batches of topical nanogel were characterized through pH, homogeneity, spreadability, viscosity, drug content and in vitro drug release study. Based on pH (6.5-6.8), drug content (91.25±0.9%), spreadability (6.7 cm/sec), C2 batch was subjected to In vitro skin occlusivity study, in-vitro release study and In vitro heamolysis study. Conclusion: The percent cumulative drug release for Finasteride (FSD) gel was found to be 758.52±1.49 µg at 24 h which is quite higher than plain gel and Finasteride (FSD) gel showed maximum occlusiveness and excellent spreadability and found to be stable. In conclusion, prepared Finasteride (FSD) Nanogel could be used with promising potential for the treatment of Androgenetic Alopecia.


Sign in / Sign up

Export Citation Format

Share Document