Formulation and Evaluation of Ketoprofen Using β-Cyclodextrin Capped Silver Nanoparticles

Author(s):  
Kiranmai Mandava ◽  
Kruthika Lalit ◽  
Venu Madhav Katla

The objective of the study was to develop silver nanoparticles loaded with Ketoprofen (Ag-KP) for increasing the drug solubility and thereby its bioavailability. Ag-KP were prepared by the solvent evaporation method using β-Cyclodextrin as a biodegradable polymer. Different formulations of Ag-KP were characterized for the drug entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), particle size analysis, X-ray diffraction studies (XRD), scanning electron microscopy (SEM) and  in-vitro dissolution studies. The optimized formulation (F6) has shown an average particle size of 167.8 ± 3.46 nm,zeta potential of -23.7 ± 1.46 mV. FTIR revealed that the drug showed good excipient compatibility. XRD studies showed that the drug has changed from crystalline to amorphous state. In all formulations, F6 formulation (optimized) exhibited high drug entrapment efficiency (∼93%). SEM studies indicated the shape of Ag-KP was roughly spherical with smooth surface. In vitro dissolution studies showed that Ag-KP from F6 formulation was 94.3 ± 4.9% but for the marketed formulation, it is only 84.6 ± 3.7% in 12 hours and F6 was found to be found stable for three months at both refrigerated and room temperature (RT).

Author(s):  
Pankaj P Nerker ◽  
Hitendra Mahajan ◽  
Sagar Deore ◽  
Pradyumn Ige

Nanosuspensions provide convenient formulations for improving the bioavailability and drug delivery. The objective of the investigation was to develop stable nanosuspension formulation of ramipril, with minimum surfactant concentration that could improve its solubility, stability and oral bioavailability. Ramipril is a potent antihypertensive drug, which act by inhibiting the angiotensin-converting enzyme. Nanosuspension was developed by antisolvent precipitation followed by high-pressure homogenization using hydrophilic polymers such as HPMC E5, HPMC E15, PVP K30, PVP K25, and PVA. The resulting nanosuspension was transformed into dry powder by freeze-drying process. Among all five formulations a formulation was choosen on the basis of results obtained from comparative study between different polymers based nanosuspension formulation of ramipril. The nanosuspension prepared was then evaluated for particle size, polydispesivity index, zeta potential, entrapment efficiency, saturated solubility study, scanning electron microscopy, differential scanning colorometry, and X ray diffraction. The combination of soya lecithin and pluronic F-68 as stabilizers yield nanosuspension with the smallest average particle size. The formulation of ramipril based on HPMC E 15 (Formulation B) shown enhanced dissolution rate. In which more than 60% of the drug was dissolved in the first 20 min compared to less than 25% of the pure drug within the same time period. The increase in the in vitro dissolution rate, nano size may favourably affect bioavailability.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (01) ◽  
pp. 20-27
Author(s):  
H. B Samal ◽  
I. J. Das ◽  
P. N. Murthy ◽  

The present study involves the design and characterization of floating microspheres with gabapentin as model drug for prolongation of gastric residence time. Gabapentin floating microspheres were prepared by o/w/o emulsification solvent diffusion technique using ethyl cellulose as the rate controlling polymer at various concentrations. The shape and surface morphology of microspheres were characterized by optical and scanning electron microscopy. Absence of drug-polymer interaction was confirmed by FTIR analysis. In vitro drug release studies were performed and drug release kinetics was evaluated using the linear regression method. Effects of polymer concentration, solvent composition, particle size, drug entrapment efficiency and drug release were also studied. The synthesized microspheres exhibited prolonged drug release (> 12 h) and remained buoyant for > 24 h. The drug entrapment efficiency was in the range 46-70 %. At higher polymer concentration, the average particle size was increased and the drug release rate decreased. In vitro studies revealed diffusion-controlled drug release from the microspheres. Among all the formulations (F1-F5), F4 is the optimized formulation.


Author(s):  
Priyangi Roy ◽  
Purusattam Gartia ◽  
Aritra Nayek ◽  
Asok Kumar Samanta

The aim of the study was to prepare gefitinib-loaded polycaprolactone microcapsules by simple conventional solvent evaporation method with a view to achieve controlled release of the drug following subcutaneous administration once in a week for targeted therapeutic action especially locally. The microcapsules were prepared using different drug-polymer ratios (1:2, 1:4 and 1:6) and three different stabilizers/surfactants (0.25% w/v, 0.50% w/v and 0.75% w/v) concentrations in aqueous phase. Depending upon the formulation variables, the highest drug entrapment efficiency and the lowest average particle size diameter of the microcapsules were found to be respectively 90.19±2.61 % and 201±3.05 µ. Comparison of Fourier Transform Infra Red spectra of gefitinib, polycaprolactone, their physical mixture and the drug- loaded microcapsules showed the absence of drug -polymer interaction .The in-vitro dissolution study showed that the release of drug from the microcapsules was almost complete on day seventh and the drug release followed Higuchi model.


2020 ◽  
Vol 11 (2) ◽  
pp. 2445-2457
Author(s):  
Prashant Singh ◽  
Ritu M. Gilgotra

The purpose of this investigation is to establish anti-diabetic activity relationship as well as efficiency of formulated guar gum matrix tablet using microencapsulated glibenclamide (GBLD). This research is an approach to utilize pharmaceutical excipients as an alternative hypoglycemic agent. In order to execute the objective, GBLD microspheres were formulated by emulsion solvent evaporation method using dichloromethane and methanol as solvent system which was transferred drop after drop into encapsulating medium i.e. liquid paraffin light. The formulated microspheres were exposed to various assessment parameters like drug entrapment efficiency, % yield, particle size distribution, and average particle size, the morphology of surface, dissolution study (in vitro) and micromeritics of prepared microspheres. By using these microspheres, matrix tablets were then prepared which were further evaluated for weight variation, thickness, friability, hardness, drug content, stability study, disintegration time, swelling index and dissolution (in vitro) studies were carefully carried out. Betwixt all the formulated microspheres GEM3 was found to best optimized with respect to evaluation parameters. The results obtained were found within the desired ranges where % yield 93.75%, drug entrapment efficiency 95.627% at 12th hour, and the average particle size was observed to be 179.4±0.12 µm. Then, by using the method of direct compression matrix tablets of optimized microspheres GEM3 were prepared and drug release (in vitro) was performed. The obtained results of performed parameters on matrix tableted microspheres were within the acceptable range according to IP guidelines. Out of all formulated matrix tableted microspheres, formulation GMT4 and GMT7 showed an in-vitro % drug release of 95.257 and 94.404 at 12th hour in pH 7.4 phosphate buffer. 


Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.


2020 ◽  
Vol 17 (2) ◽  
pp. 159-173
Author(s):  
Qinqin Liu ◽  
Hongmei Xia ◽  
Yinxiang Xu ◽  
Yongfeng Cheng ◽  
Zhiqing Cheng

Objective: Paeonol is a phenolic compounce that is volatile. In order to decrease its volatility and achieve controlled release, paeonol-loaded liposome in carbomer hydrogel was prepared by coating with soybean phospholipid via ethanol injection method and then added into the carbomer hydrogel. Methods: The quality of paeonol-loaded liposome in carbomer hydrogel was evaluated by the degree of roundness, particle size distribution, zeta potential, entrapment efficiency (filtration method and chitosan neutralization method), viscosity, infrared spectrum, etc. Furthermore, the diffusion from paeonolloaded liposome in hydrogel was studied in vitro. Results: The results showed that the average particle size of paeonol-loaded liposome was about 401 nm, the potential was -17.8 mV, and the entrapment efficiency was above 45%. The viscosity of paeonol- loaded liposome in hydrogel was 23.972×10-3 Pa*s, and the diffusion rate from paeonol-loaded liposome in hydrogel in vitro was obviously slower than that from the other paeonol preparations. Conclusion: The conclusions could be drawn that paeonol-loaded liposome in hydrogel was a kind of novel preparation, and its diffusion in vitro had obvious controlled-release characteristics, which further proved that it might improve the bioavailability of paeonol.


Author(s):  
Amruta Papdiwal ◽  
Kishor Sagar ◽  
Vishal Pande

Poor water solubility and slow dissolution rate are major issues for the majority of upcoming and existing biologically active pharmaceutical compounds. Nateglinide is Biopharmaceutical Classification System Class-II drug that has low solubility and high permeability. The purpose of the present study was to improve the solubility and dissolution rate of Nateglinide by the preparation of nanosuspension by the nanoprecipitation technique. Nateglinide nanosuspension was evaluated for its particle size, in vitro dissolution study, and characterized by differential scanning calorimetry and scanning electron microscopy. The optimized formulation showed an average particle size of 207 nm and zeta potential of -25.8 mV. The rate of dissolution of the optimized nanosuspension was enhanced by 83% in 50 min relative to micronized suspension of nateglinide (37% in 50 min). This improvement was mainly due to the formulation of nanosized particles of Nateglinide. Stability study revealed that nanosuspension was more stable at room temperature and refrigerator condition with no significant change in particle size distribution. These results indicate that the nateglinide loaded nanosuspension may significantly improve in vitro dissolution rate and thereby possibly enhance the onset of therapeutic effect.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 439 ◽  
Author(s):  
Hibah M. Aldawsari ◽  
Nabil A. Alhakamy ◽  
Rayees Padder ◽  
Mohammad Husain ◽  
Shadab Md

Resveratrol (RES) is a polyphenolic compound which has shown beneficial pharmacological effects such as anti-inflammatory, antioxidant, and anti-cancer effects. However, poor aqueous solubility, bioavailability, and low stability are the major limitations to the clinical application of RES. Therefore, in the present study, chitosan (CS) coated PLGA nanoparticles of RES (CS-RES-PLGA NPs) was developed, characterized and its anticancer activity was evaluated in the H1299 lung carcinoma cell line. The effects of the increase in CS coating and cryoprotectant concentration on particle size, polydispersity index (PDI) and zeta potential (ZP) were determined. The particle size, PDI, ZP and entrapment efficiency of the optimized CS-RES-PLGA NPs were found to be 341.56 ± 7.90 nm, 0.117 ± 0.01, 26.88 ± 2.69 mV and 75.13% ± 1.02% respectively. The average particle size and ZP showed a steady increase with an increase in CS concentration. The increase in positive zeta potential is evident for higher CS concentrations. The effect of trehalose as cryoprotectant on average particle size was decreased significantly (p < 0.05) when it was increased from 1%−5% w/v. TEM and SEM showed uniform particle distribution with a smooth surface and spherical shape. The CS coating provides modulation of in vitro drug release and showed a sustained release pattern. The stability of RES loaded PLGA NPs was improved by CS coating. CS-coated NPs showed greater cytotoxicity and apoptotic activities compared to free RES. The CS coated NPs had a higher antioxidant effect than the free RES. Therefore, CS coated PLGA NPs could be a potential nanocarrier of RES to improve drug solubility, entrapment, sustain release, stability and therapeutic application.


2020 ◽  
Vol 20 (3) ◽  
pp. 1321-1331 ◽  
Author(s):  
Yuanyuan Wang ◽  
Yining Yang ◽  
Yibin Yu ◽  
Jinyu Li ◽  
Weisan Pan ◽  
...  

In this study, a novel transferrin modified liposomal dioscin was prepared by the film dispersion method. The transferrin modified dioscin loaded liposomes (Tf-Lip/Dio) were near-spherical in morphology and had an average particle size of 140.07±1.33 nm, a narrow polydispersity index of <0.2 and a relatively stable zeta potential of -23.7±1.16 mV. The drug entrapment efficiency (EE) and drug loading (DL) of Tf-Lip/Dio were 88.94±1.02% and 4.16±0.05%, respectively. Tf-Lip/Dio exhibited a sustained release characterization of approximately 30% of the total dioscin content after 72 h at 37 °C. Tf-Lip/Dio showed higher cytotoxic efficacy after incubation for 24 h in both HeLa cells and HepG2 cells than in nonmodified liposomes. The enhanced antitumor activity of Tf-Lip/Dio might be due to the increased intracellular uptake, which was corroborated by laser scanning confocal microscopy and flow cytometry. Furthermore, hemolysis experiments preliminarily verified the safety of its intravenous injection. Overall, this study demonstrates Tf-Lip/Dio to be a favorable delivery vehicle for dioscin in future cancer therapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Amiya kumar Prusty ◽  
Susanta Kumar Sahu

The current study was designed to prepare and characterize insulin incorporated nanoparticles by complex coacervation process followed by antidiabetic study of orally administered insulin incorporated nanoparticles in diabetic rats. The nanoparticles were characterized for particle size, loading and entrapment efficiency as well as in vitro release of incorporated insulin. The prepared nanoparticles were found to have an average particle size of 551.67 nm ±45.5. The highest entrapment efficiency and loading capacity values were found to be of 52.48±1.98 and 47.01±1.21, respectively. Oral administration of 10 IU/Kg of insulin loaded nanoparticles to diabetic rats showed a maximum blood glucose change of 53.46±2.19 at 5-hours time period. The results obtained indicate the potential of prepared nanoparticulate system as a carrier for oral delivery of insulin.


Sign in / Sign up

Export Citation Format

Share Document