FORMULATION, CHARACTERIZATION AND IN VITRO EVALUTION OF GABAPENTIN FLOATING MICROSPHERES

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (01) ◽  
pp. 20-27
Author(s):  
H. B Samal ◽  
I. J. Das ◽  
P. N. Murthy ◽  

The present study involves the design and characterization of floating microspheres with gabapentin as model drug for prolongation of gastric residence time. Gabapentin floating microspheres were prepared by o/w/o emulsification solvent diffusion technique using ethyl cellulose as the rate controlling polymer at various concentrations. The shape and surface morphology of microspheres were characterized by optical and scanning electron microscopy. Absence of drug-polymer interaction was confirmed by FTIR analysis. In vitro drug release studies were performed and drug release kinetics was evaluated using the linear regression method. Effects of polymer concentration, solvent composition, particle size, drug entrapment efficiency and drug release were also studied. The synthesized microspheres exhibited prolonged drug release (> 12 h) and remained buoyant for > 24 h. The drug entrapment efficiency was in the range 46-70 %. At higher polymer concentration, the average particle size was increased and the drug release rate decreased. In vitro studies revealed diffusion-controlled drug release from the microspheres. Among all the formulations (F1-F5), F4 is the optimized formulation.

Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.


2020 ◽  
Vol 11 (2) ◽  
pp. 2445-2457
Author(s):  
Prashant Singh ◽  
Ritu M. Gilgotra

The purpose of this investigation is to establish anti-diabetic activity relationship as well as efficiency of formulated guar gum matrix tablet using microencapsulated glibenclamide (GBLD). This research is an approach to utilize pharmaceutical excipients as an alternative hypoglycemic agent. In order to execute the objective, GBLD microspheres were formulated by emulsion solvent evaporation method using dichloromethane and methanol as solvent system which was transferred drop after drop into encapsulating medium i.e. liquid paraffin light. The formulated microspheres were exposed to various assessment parameters like drug entrapment efficiency, % yield, particle size distribution, and average particle size, the morphology of surface, dissolution study (in vitro) and micromeritics of prepared microspheres. By using these microspheres, matrix tablets were then prepared which were further evaluated for weight variation, thickness, friability, hardness, drug content, stability study, disintegration time, swelling index and dissolution (in vitro) studies were carefully carried out. Betwixt all the formulated microspheres GEM3 was found to best optimized with respect to evaluation parameters. The results obtained were found within the desired ranges where % yield 93.75%, drug entrapment efficiency 95.627% at 12th hour, and the average particle size was observed to be 179.4±0.12 µm. Then, by using the method of direct compression matrix tablets of optimized microspheres GEM3 were prepared and drug release (in vitro) was performed. The obtained results of performed parameters on matrix tableted microspheres were within the acceptable range according to IP guidelines. Out of all formulated matrix tableted microspheres, formulation GMT4 and GMT7 showed an in-vitro % drug release of 95.257 and 94.404 at 12th hour in pH 7.4 phosphate buffer. 


2021 ◽  
Author(s):  
Cheran K ◽  
Udaykumar B Bolmal ◽  
Archana S Patil ◽  
Umashri A Kokatanur ◽  
Rajashree S Masareddy

Abstract Background: The goal of this study was to develop a gastro retentive floating drug delivery system that would improve site specific activity, patient compliance and therapeutic efficacy.Methodology: Floating microspheres of Miglitol were formulated by double emulsion method using ethyl cellulose and eudragit E100 different weight ratio and PVA as an emulsifier. It has been prepared with respect quantity of polymer concentration and stirring speed to evaluate for % buoyancy, drug entrapment efficiency, particle size drug release rate. Result: The percent of buoyancy, drug entrapment efficiency, particle size, and percentage yield were increased with increase the polymer mixture concentration. Among all formulation batches, F6 showed acceptable results drug entrapment efficiency (86.57%) and buoyancy (94.25%). F10 formulation was prepared to check the predicted and actual factors and compared with optimized formulation F6. The drug release was increased as the polymer concentration was decrease. The kinetic model zero order had the highest regression coefficient value, it was described as a sustained release dosage form. According to ICH guideline accelerated stability studies of F6 and F10 formulations were conducted for 90 days. After 90 days buoyancy and in vitro drug release was performed and the results were F6 and F10 buoyancy was found to be 88.21%, 87.22% and in vitro drug release was found to be 62.87%, 63.51%. Conclusion: The present study, showed compatibility of drug with polymers by FTIR in formulation. Floating microsphere of Miglitol was prepared by double emulsion technique. The F6 Miglitol floating microsphere was optimized formulation demonstrated with excellent drug entrapment performance (86.57%), good floating behaviour (94.25%), and the largest particle size (670µm). The present study concludes that floating based gastro retentive delivery system of Miglitol microspheres has a safe and effective drug delivery system with increased therapeutic efficacy and a longer duration of action.


Author(s):  
Kiranmai Mandava ◽  
Kruthika Lalit ◽  
Venu Madhav Katla

The objective of the study was to develop silver nanoparticles loaded with Ketoprofen (Ag-KP) for increasing the drug solubility and thereby its bioavailability. Ag-KP were prepared by the solvent evaporation method using β-Cyclodextrin as a biodegradable polymer. Different formulations of Ag-KP were characterized for the drug entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), particle size analysis, X-ray diffraction studies (XRD), scanning electron microscopy (SEM) and  in-vitro dissolution studies. The optimized formulation (F6) has shown an average particle size of 167.8 ± 3.46 nm,zeta potential of -23.7 ± 1.46 mV. FTIR revealed that the drug showed good excipient compatibility. XRD studies showed that the drug has changed from crystalline to amorphous state. In all formulations, F6 formulation (optimized) exhibited high drug entrapment efficiency (∼93%). SEM studies indicated the shape of Ag-KP was roughly spherical with smooth surface. In vitro dissolution studies showed that Ag-KP from F6 formulation was 94.3 ± 4.9% but for the marketed formulation, it is only 84.6 ± 3.7% in 12 hours and F6 was found to be found stable for three months at both refrigerated and room temperature (RT).


Author(s):  
Sanaa El Gizaway ◽  
Maha Fadel ◽  
Basma Mourad ◽  
Fatma El-zahraa Abd Elnaby

Objective: The main aim of this study was to design and characterise betamethasone di-propionate loaded transfersomes (BD-T); as a topical formulation for the treatment of localized plaque psoriasis.Methods: A full factorial design (23) was applied to study the effects of three independent variables: drug content, type of surfactants and surfactant contents on particle size (PS), entrapment efficiency (EE %), zeta potential (ZP), polydispersity index (PI) and drug release profiles. The optimized BD-T was formulated as a hydrogel using 5% sodium carboxymethyl cellulose. The gel was characterized for viscosity, drug content, in vitro drug release and stability. A comparative clinical study was performed on 20 patients with psoriasis to investigate the effect of BD-T gel and the marketed betamethasone dipropionate (BD) cream.Results: The optimized BD-T formulation containing 50 mg betamethasone dipropionate (BD) and 5 mg tween 80 showed spherical unilamellar vesicles with an average particle size of 242.80, % EE of 90.19%, ZP of-15.00 mV, PI of 0.407 and K0 of 4.290 mg/hr. The formulation showed good stability at 4 °C and 25 °C for 6 mo. The results revealed significant clinical improvement and a significant increase in safety and tolerability with BD-T gel compared with BD cream.Conclusion: As a conclusion, BD-T was found to be more effective, safe and tolerable for the treatment of psoriasis compared with the marketed product.


2018 ◽  
Vol 8 (5) ◽  
pp. 190-199
Author(s):  
A K Sachan ◽  
A Gupta ◽  
K Kumari ◽  
A Ansari

The work investigated the design and evaluation of microspheres of Nitazoxanide by Ionotropic gelation technique met. 32 Factorial designs were used and concentration of polymer carbopol-934 (X1) and Ethyl cellulose (X2) were selected as the independent variables. The surface morphology study by SEM indicated that microspheres were spherical with smooth surface. There was no interaction between the drug and polymers, as studied by FTIR study. The prepared microspheres were characterized by entrapment efficiency, particle size micromeritic properties. It was observed that on increasing polymer concentration of formulations, % yield, the entrapment efficiency and particle size were increased whereas % drug release decreased. The In Vitro release study was done using U.S.P. dissolution rate basket type apparatus in phosphate buffer pH 7.4 for 10 hr. It shows that on increasing polymer concentration the drug release of all formulations was gradually decreased. In Vitro mucoadhesion study depicts that as the polymer concentration increased, mucoadhesive nature of the formulation was also increased. The microspheres of NTZ (formulation F9) showed best results due to highest drug entrapment efficiency (85.50%), and percentage drug release after 10.0 hr. was 50.25%. The rate of release followed First order kinetics. The microspheres exhibits good mucoadhesive properties in  in- vitro wash-off test at pH 7.4 (Intestinal pH) than pH 1.2 (gastric pH),because the drug was completely absorbed in Gastrointestinal tract, Therefore, it can be concluded that Nitazoxanide Loaded algino-carbopol-934 microspheres can be formulated for sustained drug delivery of Nitazoxanide used in Chronic Hipatitis-C. Keywords: Mucoadhesive microspheres, Nitazoxanide, Carbopol-934, Ethyl cellulose, Sodium Alginate, Factorial design.


Author(s):  
Kumar Nishchaya ◽  
Swatantra K.S. Kushwaha ◽  
Awani Kumar Rai

Background: Present malignant cancer medicines has the advancement of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer medication in malignant growth tissue. Aim: In the present investigation, a silica nanoparticles (MSNs) stacked with hydroxyurea were combined and was optimized for dependent and independent variables. Method: In this study, microporous silica nanoparticle stacked with neoplastic medication had been prepared through emulsification followed with solvent evaporation method. Prepared MSNs were optimized for dependent and independent variables. Different formulations were prepared with varying ratio of polymer, lipid and surfactant which affects drug release and kinetics of drug release pattern. The obtained MSNs were identified by FTIR, SEM, drug entrapment, in-vitro drug release, drug release kinetics study, stability testing in order to investigate the nanoparticle characteristics. Results: The percentage drug entrapment of the drug for the formulations F1, F2, F3, was found to be 27.78%, 65.52% and 48.26%. The average particle size for F2 formulation was found to be 520 nm through SEM. The cumulative drug release for the formulations F1, F2, F3 was found to be 64.17%, 71.82% and 32.68%. The formulations were found to be stable which gives controlled drug delivery for 6 hours. Conclusion: From the stability studies data it can be culminated that formulations are most stable when stored at lower temperature or in refrigerator i.e. 5˚C ± 3˚C. It can be concluded that MSN’s loaded with hydroxyurea is a promising approach towards the management of cancer due to its sustained release and less side effects.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.


Author(s):  
KAUSLYA ARUMUGAM ◽  
PAYAL D. BORAWAKE ◽  
JITENDRA V. SHINDE

Objective: The main intention of this research was to formulate and evaluate floating microspheres of ciprofloxacin using different polymers to prolong gastric residence time. Methods: The microspheres were formulated by the solvent evaporation method using different ratios of polymers like carbopol 940, ethylcellulose, and Hydroxy Propyl Methyl Cellulose K4M. Further, the floating microspheres were evaluated for micromeritic properties like bulk density, tapped density, angle of repose, etc., percentage yield, particle size, entrapment efficiency, floating capacity, in vitro drug release study, release kinetics, drug content, swelling index, and Fourier Transform Infrared Spectroscopy (FTIR) (Compatibility studies). Results: The ciprofloxacin microspheres showed the good flowing property. The particle size ranged from 258.1±2.21 µm to 278±2.86 µm and entrapment efficiency ranged from 63.17±0.43% to 89.90±1.32%. The IR spectrum revealed that there was no interaction between the drug and polymer. F7 formulation was found to be the best formulation. Drug release was found to be 90.70±0.89% i.e. in a controlled manner at the end of 10 h. Conclusion: The floating microspheres were prepared successfully and the results clearly stated that prepared ciprofloxacin microspheres may be safe and effective controlled drug delivery over an extended period which can increase bioavailability, patient compliance, and decrease dosing frequency.


Sign in / Sign up

Export Citation Format

Share Document