scholarly journals Land Subsidence Potential Detection in Yogyakarta International Airport using Sentinel-1 Insar Data

2021 ◽  
Vol 23 (2) ◽  
pp. 91-99
Author(s):  
Bondan Galih Dewanto ◽  
Yanuar Haryanto ◽  
Sanidhya Nika Purnomo

On January 27, 2017, the Indonesian Government started building a new international airport in Yogyakarta Province, named Yogyakarta International Airport (YIA) to replace Adisucipto International Airport. YIA is located near the beach, which means that an awareness of natural disasters, such as coastal flooding, is essential. One of the causes of sea water flooding is land subsidence phenomenon. This land subsidence phenomenon can be monitored by using Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data. To monitor the crustal deformation, the data used in this research are from years 2016-2019. The data were processed through LiCSBAS software which is published by the COMET in the UK. In the processing scheme, interferograms with many unwrapping errors are detected and removed via loop closure. Reliable time series and velocities are extracted using several noise indices, with the help of masking. The results show the subsidence phenomenon in the YIA area (up to 25 mm).

1998 ◽  
Vol 34 (10) ◽  
pp. 2573-2585 ◽  
Author(s):  
D. L. Galloway ◽  
K. W. Hudnut ◽  
S. E. Ingebritsen ◽  
S. P. Phillips ◽  
G. Peltzer ◽  
...  

Author(s):  
Liping Zheng ◽  
Lin Zhu ◽  
Wei Wang ◽  
Lin Guo ◽  
Beibei Chen

Geological disasters, including ground deformation, fractures and collapse, are serious problems in coal mining regions, which have threatened the sustainable development for local industry. The Ordos Basin is most known for its abundant coal resources. Over-mining the underground coal resources had induced land deformation. Detecting the evolution of the land deformation features and identifying the potential risk are important for decision-makers to prevent geological disasters. We analyzed land subsidence induced by coal mining in a 200 km 2 area in the Ordos Basin for the time period 2006–2015. ALOS-1 PALSAR images from December 2006 to January 2011 and ALOS-2 PALSAR-2 images from December 2014 to July 2015, optical remotely sensed images and coal mining information were collected. The small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) method and differential interferometric synthetic aperture radar (D-InSAR) method, GIS and statistical analysis were adopted. Results show that the maximum subsidence rate and cumulative subsidence along the line of sight (LOS) were −65 mm/year and −246 mm, respectively, from December 2006 to January 2011. The maximum cumulative subsidence was −226 mm from December 2014 to July 2015. The new boundary of the mining goafs from 2014 to 2015 and the most dangerous risk region were mapped. Moreover, the effect of large-scale mining coal, with the production volume exceeds 1.2 million tons per year, with the operation time more than 20 years on land subsidence was found greater than small and medium-scale coal mines and reached −59 mm/year. The recently established small-sized and medium-sized coal mines show high land subsidence. This study will contribute to better understand the land subsidence process in mining region and provide scientific support for government to prevent land subsidence.


2011 ◽  
Vol 268-270 ◽  
pp. 1934-1939
Author(s):  
Kun Chao Lei ◽  
Hui Li Gong ◽  
Xiao Juan Li ◽  
Bei Bei Chen ◽  
Ji Wei Li ◽  
...  

Land subsidence in Cangzhou of the North China Plain, has been an ongoing problem for the past four decades (since the later 1970s). With the development of new synthetic aperture radar(SAR)sensors and interferometric synthetic aperture radar(InSAR) techniques, the application of satellite Radar data have enhanced capabilities to detect and monitor ground displacements with centimeter to millimeter precision at greater spatial detail and higher temporal resolution. We use Permanent Scatterers interferometric synthetic aperture radar(PS-InSAR)technology (Hooper, A.2004) to detect and measure ground movement in this area(from2004 to 2007). Results of the cangzhou region study are reported and the utility of the InSAR methodology is discussed.


2021 ◽  
Vol 873 (1) ◽  
pp. 012044
Author(s):  
I Gumilar ◽  
TP. Sidiq ◽  
I Meilano ◽  
B Bramanto ◽  
G Pambudi

Abstract Gedebage district is presently experiencing rapid and mass infrastructure development and becoming one of the developed districts in Bandung, Indonesia. A football stadium, several luxury housing, the grand mosque of West Java province, and a business center have been built in this district. However, it is well known that the Gedebage district has turned into one of the Bandung districts that suffers from land subsidence phenomena. Since 2000, the Gedebage district has suffered land subsidence at an average rate of 10 cm per year and becoming one of the fastest sinking districts in Bandung. This fast land subsidence phenomenon is suspected of affecting the infrastructure in this district. Therefore, this work aims to capture the current subsidence rate in the Gedebage district using the geodetic approach of the combination of the Global Navigation Satellite System (GNSS) with Interferometric Synthetic Aperture Radar (InSAR) and investigate the impact of land subsidence on infrastructures in Gedebage district. We use GNSS campaign datasets from the years 2016 and 2019. Each GNSS campaign was performed at least 10-12 hours of observations. We also utilize a similar period of 2016 to 2019 for the InSAR datasets. Utilizing both GNSS and InSAR datasets, we can capture the subsidence with the rate reaching 4 -15 cm per year between 2016 and 2019, and it occurs uniformly in this district. The impact of land subsidence occurred in almost all urban areas in the Gedebage district. These impacts include cracks in buildings, bridges and roads, and also tilted buildings.


Sign in / Sign up

Export Citation Format

Share Document