scholarly journals OPTIMASI TOPOLOGI DAN UKURAN PENAMPANG STRUKTUR RANGKA BATANG BAJA DENGAN METODE METAHEURISTIK

2019 ◽  
Vol 6 (1) ◽  
pp. 33-42
Author(s):  
Ricky Agusta Hartono

Optimasi topologi dari struktur rangka batang baja memberikan hasil yang lebih optimal dibandingkan optimasi ukuran penampang karena batang dan nodes yang tidak berguna pada struktur dapat dihilangkan. Fungsi objektif dari algoritma metaheuristik adalah untuk meminimalkan massa struktur rangka batang baja terhadap constraints statis dan dinamis berdasarkan studi kasus dan spesifikasi bangunan baja struktural Indonesia, SNI 1729:2015. Empat algoritma yang digunakan pada studi ini adalah: Particle Swarm Optimization, Differential Evolution, Teaching-Learning-Based Optimization, dan Symbiotic Organisms Search. Keempat algoritma tersebut diuji pada studi kasus 24-bar truss. Performa dari algoritma diukur dari lima kriteria massa, yaitu: massa terbaik, terburuk, rata-rata, standar deviasi, dan median dari struktur rangka batang baja. Hasil penelitian menunjukkan SOS menunjukkan performa terbaik pada studi kasus 24-bar truss.

2018 ◽  
Vol 19 (2) ◽  
pp. 103 ◽  
Author(s):  
Doddy Prayogo ◽  
Richard Antoni Gosno ◽  
Richard Evander ◽  
Sentosa Limanto

Penelitian ini menyelidiki performa dari metode metaheuristik baru bernama symbiotic organisms search (SOS) dalam menentukan tata letak fasilitas proyek konstruksi yang optimal berdasarkan jarak tempuh pekerja. Dua buah studi kasus tata letak fasilitas digunakan untuk menguji akurasi dan konsistensi dari SOS. Sebagai tambahan, tiga metode metaheuristik lainnya, yaitu particle swarm optimization, artificial bee colony, dan teaching–learning-based optimization, digunakan sebagai pembanding terhadap algoritma SOS. Hasil simulasi mengindikasikan bahwa algoritma SOS lebih unggul serta memiliki karakteristik untuk menghasilkan titik konvergen lebih cepat jika dibandingkan dengan metode metaheuristik lainnya dalam proses optimasi tata letak fasilitas proyek konstruksi.


2015 ◽  
Vol 6 (1) ◽  
pp. 23-34
Author(s):  
Dushhyanth Rajaram ◽  
Himanshu Akhria ◽  
S. N. Omkar

This paper primarily deals with the optimization of airfoil topology using teaching-learning based optimization, a recently proposed heuristic technique, investigating performance in comparison to Genetic Algorithm and Particle Swarm Optimization. Airfoil parametrization and co-ordinate manipulations are accomplished using piecewise b-spline curves using thickness and camber for constraining the design space. The aimed objective of the exercise was easy computation, and incorporation of the scheme into the conceptual design phase of a low-reynolds number UAV for the SAE Aerodesign Competition. The 2D aerodynamic analyses and optimization routine are accomplished using the Xfoil code and MATLAB respectively. The effects of changing the number of design variables is presented. Also, the investigation shows better performance in the case of Teaching-Learning based optimization and Particle swarm optimization in comparison to Genetic Algorithm.


Author(s):  
Kanagasabai Lenin

In this work Hybridization of Genetic Particle Swarm Optimization Algorithm with Symbiotic Organisms Search Algorithm (HGPSOS) has been done for solving the power dispatch problem. Genetic particle swarm optimization problem has been hybridized with Symbiotic organisms search (SOS) algorithm to solve the problem. Genetic particle swarm optimization algorithm is formed by combining the Particle swarm optimization algorithm (PSO) with genetic algorithm (GA).  Symbiotic organisms search algorithm is based on the actions between two different organisms in the ecosystem- mutualism, commensalism and parasitism. Exploration process has been instigated capriciously and every organism specifies a solution with fitness value.  Projected HGPSOS algorithm improves the quality of the search.  Proposed HGPSOS algorithm is tested in IEEE 30, bus test system- power loss minimization, voltage deviation minimization and voltage stability enhancement has been attained.


2021 ◽  
Vol 11 (6) ◽  
pp. 2703
Author(s):  
Warisa Wisittipanich ◽  
Khamphe Phoungthong ◽  
Chanin Srisuwannapa ◽  
Adirek Baisukhan ◽  
Nuttachat Wisittipanit

Generally, transportation costs account for approximately half of the total operation expenses of a logistics firm. Therefore, any effort to optimize the planning of vehicle routing would be substantially beneficial to the company. This study focuses on a postman delivery routing problem of the Chiang Rai post office, located in the Chiang Rai province of Thailand. In this study, two metaheuristic methods—particle swarm optimization (PSO) and differential evolution (DE)—were applied with particular solution representation to find delivery routings with minimum travel distances. The performances of PSO and DE were compared along with those from current practices. The results showed that PSO and DE clearly outperformed the actual routing of the current practices in all the operational days examined. Moreover, DE performances were notably superior to those of PSO.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hongtao Ye ◽  
Wenguang Luo ◽  
Zhenqiang Li

This paper presents an analysis of the relationship of particle velocity and convergence of the particle swarm optimization. Its premature convergence is due to the decrease of particle velocity in search space that leads to a total implosion and ultimately fitness stagnation of the swarm. An improved algorithm which introduces a velocity differential evolution (DE) strategy for the hierarchical particle swarm optimization (H-PSO) is proposed to improve its performance. The DE is employed to regulate the particle velocity rather than the traditional particle position in case that the optimal result has not improved after several iterations. The benchmark functions will be illustrated to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document