scholarly journals Development of On-Board In-Cylinder Gas Flow Model for Heat Loss Estimation of Diesel Engines

Author(s):  
Mitsuhisa Ichiyanagi ◽  
Kazuki Kojima ◽  
Hayao Joji ◽  
Hiroki Matsui ◽  
Takashi Suzuki
1980 ◽  
Vol 102 (4) ◽  
pp. 827-835 ◽  
Author(s):  
T. Azuma ◽  
Y. Tokunaga ◽  
T. Yura

The constant pressure turbo-charge system has now been increasingly adopted for marine diesel engines because of its higher thermal efficiency in the range of higher mean effective pressure. However, it seems that there has been no paper published on the exhaust gas pulsation of this sytem. In this study, a gas flow model of the constant pressure turbo-charged diesel engines was assumed as a basic and fundamental one, and an investigation was made of it. As a result, some characteristics of the exhaust gas pulsation of this system have been clarified and a mathematical simulation system has been established. It must be emphasized that the filling and emptying method which neglects wave propagation cannot simulate the pulsation, although it can simulate the average exhaust gas pressure and temperature of this system.


Author(s):  
Niall A. F. Campbell ◽  
J. Gary Hawley ◽  
Frank J. Wallace ◽  
Mike Wilson ◽  
Kian Banisoleiman

Abstract Integrated computational techniques using cycle simulation, finite element analysis (FEA) and gas flow modelling are currently being applied to enhance the design of automotive diesel engines by obtaining more accurate representations of the thermal boundary conditions on the gas side of the combustion chamber. This paper details the methodology of such an approach focusing on the development of a zonal gas flow model, as opposed to a full CFD analysis, to provide a quicker and more flexible means of achieving spatial gas side heat transfer models.


2011 ◽  
Vol 51 (10) ◽  
pp. 1617-1623 ◽  
Author(s):  
Jong-In Park ◽  
Ui-Hyun Baek ◽  
Kyoung-Soo Jang ◽  
Han-Sang Oh ◽  
Jeong-Whan Han

Author(s):  
John S. Jacob ◽  
Donald E. Bently ◽  
John J. Yu

The use of relatively inviscid, compressible fluids in externally-pressurized bearings has interesting possibilities for both OEM and retrofit applications. The chance to dramatically reduce mechanical losses and bearing heating, the elimination of oil from the process and installation, and the utilization of compressible process fluids as the supporting medium all have potential economic and environmental benefits. An experimental gas bearing rig was constructed to investigate the feasibility of some general applications. Clearance and orifice dimensions were selected based on a fairly simple gas flow model. Bently-Muszynska model parameters for the hydrostatic gas bearing were obtained through static-pull and non-synchronous perturbation testing.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 842
Author(s):  
Tea-Woo Kim ◽  
Nam-Sub Woo ◽  
Sang-Mok Han ◽  
Young-Ju Kim

The accurate prediction of pressure loss for two-phase slug flow in pipes with a simple and powerful methodology has been desired. The calculation of pressure loss has generally been performed by complicated mechanistic models, most of which require the iteration of many variables. The objective of this study is to optimize the previously proposed simplified slug flow model for horizontal pipes, extending the applicability to turbulent flow conditions, i.e., high mixture Reynolds number and near horizontal pipes. The velocity field previously measured by particle image velocimetry further supports the suggested slug flow model which neglects the pressure loss in the liquid film region. A suitable prediction of slug characteristics such as slug liquid holdup and translational velocity (or flow coefficient) is required to advance the accuracy of calculated pressure loss. Therefore, the proper correlations of slug liquid holdup, flow coefficient, and friction factor are identified and utilized to calculate the pressure gradient for horizontal and near horizontal pipes. The optimized model presents a fair agreement with 2191 existing experimental data (0.001 ≤ μL ≤ 0.995 Pa∙s, 7 ≤ ReM ≤ 227,007 and −9 ≤ θ ≤ 9), showing −3% and 0.991 as values of the average relative error and the coefficient of determination, respectively.


SPE Journal ◽  
2012 ◽  
Vol 18 (01) ◽  
pp. 38-49 ◽  
Author(s):  
Mohammad R. Rahmanian ◽  
Roberto Aguilera ◽  
Apostolos Kantzas

Summary In this study, single-phase gas-flow simulation that considers slippage effects through a network of slots and microfractures is presented. The statistical parameters for network construction were extracted from petrographic work in tight porous media of the Nikanassin Group in the Western Canada Sedimentary Basin (WCSB). Furthermore, correlations between Klinkenberg slippage effect and absolute permeability have been developed as well as a new unified flow model in which Knudsen number acts implicitly as a flow-regime indicator. A detailed understanding of fluid flow at microscale levels in tight porous media is essential to establish and develop techniques for economic flow rate and recovery. Choosing an appropriate equation for flow through a single element of the network is crucial; this equation must include geometry and other structural features that affect the flow as well as all variation of fluid properties with pressure. Disregarding these details in a single element of porous media can easily lead to flow misinterpretation at the macroscopic scale. Because of the wide flow-path-size distribution in tight porous media, a variety of flow regimes can exist in the equivalent network. Two distinct flow regimes, viscous flow and free molecular flow, are in either side of this flow-regime spectrum. Because the nature of these two types of flow is categorically different, finding/adjusting a unified flow model is problematic. The complication stems from the fact that the viscosity concept misses its meaning as the flow regime changes from viscous to free molecular flow in which a diffusion-like mechanism dominates. For each specified flow regime, the appropriate equations for different geometries are studied. In addition, different unified flow models available in the literature are critically investigated. Simulation of gas flow through the constructed network at different mean flow pressures leads to investigating the functionality of the Klinkenberg factor with permeability of the porous media and pore-level structure.


2018 ◽  
Vol 6 (4) ◽  
pp. SN1-SN10 ◽  
Author(s):  
Peiqing Lian ◽  
Taizhong Duan ◽  
Rui Xu ◽  
Linlin Li ◽  
Meng Li

The shale gas reservoir is a complex subject with a multiscale nanopore and fracture system, and the gas flow mechanism indicates an evident difference from the conventional gas reservoir. We have introduced fractal theory to characterize the multiscale distribution of pores and fractures, and we have developed a single-phase radial flow model considering nonequilibrium adsorption to describe the flow characteristics in the shale gas reservoir. The numerical solution of the flow model in Euclidean space is obtained by inversing the analytical solution derived in Laplace space through the Stehfest numerical inversion method, and the log-log curve of the dimensionless bottom-hole pressure (BHP) and its derivative versus dimensionless time are analyzed. The log-log curve of the dimensionless BHP has two distinct straight-line segments: The unit slope line reflects early well-storage effect, and the straight line with slope [Formula: see text] reflects reservoir fractal characteristics. The slope of the straight line will become smaller with the increasing fractal dimension. The adsorption coefficient mainly affects the middle and late period of the log-log curves, and more shale gas will desorb from the matrix with the increasing adsorption coefficient. The wellbore storage coefficient has a significant negative correlation with dimensionless BHP especially at the early and transitional stages. The skin factor mainly affects the transition section; a smaller skin factor generally leads to the earlier appearance of the transition section. In addition, a smaller interporosity flow coefficient also results in an earlier transition stage appearance. The lower storativity ratio means a higher dimensionless BHP and an earlier appearance of the transition stage.


Sign in / Sign up

Export Citation Format

Share Document