scholarly journals A Study on Improving the Productivity of a Maritime Container Terminal from the Point of View of Reliability and Maintainability of Terminal Container Handling Equipments : On Reliability and Maintainability of a Gantry Crane

2005 ◽  
Vol 112 (0) ◽  
pp. 255-263
Author(s):  
Hitoshi KANEKO ◽  
Hachiro KIDO ◽  
Akio IMAI ◽  
Etsuko NISHIMURA
2019 ◽  
Vol 20 (1-2) ◽  
pp. 487-492
Author(s):  
Daria Kubowicz

The article explains and discusses the logistic processes occuring inside a maritime container terminal. The processes relate to import as well as export of the goods. A brief characteristisc of the handling equipment, such as: Automated Guided Vehicle, Rail Mounted Gantry Crane, Rubber Tyred Gantry Crane and Ship-to-shore crane has been carried out. During the internal transportation of the containers within the terminal, all the procedures must integrate together. Due to large number of processes taking place in terminals, they base on operating systems such as: Terminal Operating Systems. The characteristics of TOS operating in polish container terminals has been performed. The TOS are IT tools facilitating management of the terminal and leading to improve its efficiency and effectiveness. The purpose of the article is to highlight advantages and benefits of using systems such as TOS..


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Li Wang ◽  
Xiaoning Zhu

Rail mounted gantry crane (RMGC) scheduling is important in reducing makespan of handling operation and improving container handling efficiency. In this paper, we present an RMGC scheduling optimization model, whose objective is to determine an optimization handling sequence in order to minimize RMGC idle load time in handling tasks. An ant colony optimization is proposed to obtain near optimal solutions. Computational experiments on a specific railway container terminal are conducted to illustrate the proposed model and solution algorithm. The results show that the proposed method is effective in reducing the idle load time of RMGC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


2021 ◽  
Vol 13 (3) ◽  
pp. 1190
Author(s):  
Gang Ren ◽  
Xiaohan Wang ◽  
Jiaxin Cai ◽  
Shujuan Guo

The integrated allocation and scheduling of handling resources are crucial problems in the railway container terminal (RCT). We investigate the integrated optimization problem for handling resources of the crane area, dual-gantry crane (GC), and internal trucks (ITs). A creative handling scheme is proposed to reduce the long-distance, full-loaded movement of GCs by making use of the advantages of ITs. Based on this scheme, we propose a flexible crossing crane area to balance the workload of dual-GC. Decomposing the integrated problem into four sub-problems, a multi-objective mixed-integer programming model (MIP) is developed. By analyzing the characteristic of the integrated problem, a three-layer hybrid heuristic algorithm (TLHHA) incorporating heuristic rule (HR), elite co-evolution genetic algorithm (ECEGA), greedy rule (GR), and simulated annealing (SA) is designed for solving the problem. Numerical experiments were conducted to verify the effectiveness of the proposed model and algorithm. The results show that the proposed algorithm has excellent searching ability, and the simultaneous optimization scheme could ensure the requirements for efficiency, effectiveness, and energy-saving, as well as the balance rate of dual-GC.


2004 ◽  
Vol 28 (4) ◽  
pp. 285-291
Author(s):  
Nam-Kyu Park ◽  
Sang-Wan Lee ◽  
Hyung-Rim Park ◽  
Hae-Kyoung Kwon

2017 ◽  
Vol 24 (3) ◽  
pp. 106-114 ◽  
Author(s):  
Mikołaj Miśkiewicz ◽  
Oskar Mitrosz ◽  
Tadeusz Brzozowski

Abstract Appropriate risk assessment plays a fundamental role in the design. . The authors propose a possible method of design risk mitigation, which follows recommendations included in Eurocode 7. The so-called “Observational Method” (OM) can produce savings in costs and programmes on engineering projects without compromising safety. The case study presented is a complex design solution that deals with the heavy foundations of a gantry crane beam as one of the elements of a Deepwater Container Terminal extension. The paper presents a detailed process of the design of the rear crane beam being a part of the brand new berth, together with its static analysis, as well as the long-term results of observations, which have revealed the real performance of the marine structure. The case presented is based on excessive preliminary field tests and technical monitoring of the structure, and is an example of a successful OM implementation and design risk mitigation.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qi Zhang ◽  
Adjei Courage Kwabla ◽  
Yanhui Zhuang ◽  
Mingjun Ling ◽  
Yuguang Wei ◽  
...  

Based on the “Internet +” technology, this paper establishes a logistics information platform for the container terminal. Under the premise of the scheduled arrival time and quantity of the truck, this paper aims at minimizing the working time of the loading and unloading equipment and the stay time of the train and truck in the station, and develops a scheduling optimization of loading and unloading model combing equilibrium assignment and flexible scheduling to realize the seamless transfer between rail and road transportation in container terminal. In order to solve the model, a multi-layer coding genetic algorithm with chromosome feasibility is designed to obtain the optimal scheduled time for the truck, and the optimal operation sequence of the gantry crane. Referring to China’s container station, this paper takes Takoradi container terminal of Ghana as a case to verify the accuracy and effectiveness of the model and algorithm and provides the medium or long term planning for Ghana’s development.


Sign in / Sign up

Export Citation Format

Share Document