scholarly journals ON WAVE DEFORMATION AFTER BREAKING

1974 ◽  
Vol 1 (14) ◽  
pp. 27
Author(s):  
Toru Sawaragi ◽  
Koichiro Iwata

Waves will dissipate their energy rapidly after breaking. In this paper, the three factors , (i) formation of a horizontal roller,(11) bottom friction, and (in) turbulence with air entrainment, which will contribute to the energy dissipation, are dealt with experimentally and theoretically The horizontal roller formed by a plunging breaker is approximated as a Rankme-type vortex by experiments, and it is calculated that 15$-30%of wave energy is dissipated due to the formation of horizontal roller alone from a breaking point to a point of the roller disappearance. A bottom shear stress due to a breaker is measured by the shear meter deviced by the authors and it is clarified that the energy dissipation due to bottom friction is a little Mam part of the energy dissipation is taken to be caused by the turbulence with air entrainment. It is indicated that an incident monocromatic wave is transformed into a higher frequency wave due to the turbulence. Furthermore, a new basic equation for breaking waves with a turbulence term expressed by a Reynolds stress is presented The theoretical curves computed numerically have a consistent agreement with the experimental results.

1988 ◽  
Vol 1 (21) ◽  
pp. 102 ◽  
Author(s):  
E.W. Bijker ◽  
C.A. De Bruyn

Tests have been performed on a vertical pile subject to current only and to a combination of current with normal waves and current with breaking waves. The scour around the pile produced by current only is decreased by normal short waves superimposed upon that current and increased when breaking waves are superimposed upon the current. After analysis of the velocity profiles in the undisturbed area upstream of the pile and next to the pile, the following explanation is found for this phenomenon. When normal short waves are superimposed upon a current, the bottom shear stress of the combination of current with waves is increased more in the undisturbed area than next to the pile in the scour area. This results in a decrease of the scour around the pile. Due to the large values of the orbital velocity under breaking waves this effect is reversed for the combination of a current with breaking and relatively long waves. This results in an increase of the scour around the pile.


Author(s):  
Shi Sen Li ◽  
Jie Gao ◽  
Chongren Qin ◽  
Tao Liu

When the strength of wave traveling over sandy bed reaches a certain condition, the bed form will be changed, to form the sand ripple bed. The formation mechanism of the bottom shear stress on ripple bed differs from that on plane bed. However investigation on the bottom shear stress on ripple bed is foundation of the investigation on the wave damping with traveling and the sediment transport. Therefor, this investigation is significant. The present paper measured the bottom shear stress directly and gave formulas to calculate the bottom friction factor and shear stress on the ripple bed.


2008 ◽  
Vol 2008 (1) ◽  
pp. 499-508 ◽  
Author(s):  
Erik Wickley-Olsen ◽  
Michel C. Boufadel ◽  
Tom King ◽  
Zhengkai Li ◽  
Ken Lee ◽  
...  

ABSTRACT The wave tank (32 m long × 2.0 m high × 0.6 m wide) at the Bedford Institute of Oceanography in Nova Scotia was used to simulate the propagation and breaking of deep water waves using a flap-type wavemaker. The water profile and velocity were measured using a wave gauge and an Acoustic Doppler Velocimeter (ADV). The wave periods of interest ranged between 1.18 and 2.08 seconds. A technique for generating breaking waves at the same location in the tank was used to obtain a spilling and a plunging breaker. We evaluated the energy dissipation rate at various depths in the tank for regular and breaking waves. Plunging breaking waves had heights of 0.25m. For the breaking experiments, the energy dissipation rate decreased from around 1.0 10−2 watts/kg a few centimeters below the surface to less than 5.0 10−4 watt/kg 20 cm deep in the water column. The regular waves had, on the average, an energy dissipation rate of 5.0 10−6 watt/kg deep in the water column. This indicates that breaking plays an important role in the dispersion of oil at sea.


2011 ◽  
Vol 1 (32) ◽  
pp. 11
Author(s):  
Pierre Lubin ◽  
Stéphane Glockner ◽  
Olivier Kimmoun ◽  
Hubert Branger

Numerical simulation of spilling breaking waves is still a very challenging aim to achieve since small interface deformations, air entrainment and vorticity generation are involved during the early stage of the breaking of the wave. High mesh grid resolutions and appropriate numerical methods are required to capture accurately the length scales of the complex mechanisms responsible for the start of the breaking (small plunging jet, white foam, etc.). Numerical works usually showed better agreements when simulating plunging breaking waves than the spilling case compared with available experimental data. Kimmoun and Branger (2007) recently experimented surf-zone breaking waves. Detailed pictures showed a short spilling event occurred at the crest of the waves, before degenerating into strong plunging breaker. This work is devoted to the qualitative comparison of our numerical results with the experimental observations, as we will focus on capturing and describing the spilling phase experimented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingying Lu ◽  
Xiaolong Cheng ◽  
Zhenhua Wang ◽  
Ran Li ◽  
Jingjie Feng ◽  
...  

AbstractTotal dissolved gas (TDG) supersaturation, which occurs during dam spilling, may result in fish bubble disease and mortality. Many studies have been conducted to identify the factors pertaining to TDG generation, such as the spilling discharge and tailwater depth. Additionally, the energy dissipation efficiency should be considered due to its effect on the air entrainment, which influences the TDG generation process. According to the TDG field observations of 49 cases at Dagangshan and Xiluodu hydropower stations, the TDG was positively related to the energy dissipation efficiency, tailwater depth and discharge per unit width. A correlation between the generated TDG level and these factors was established. The empirical equations proposed by the USACE were calibrated, and the TDG level estimation performance was compared with the established correlation for 25 spillage cases at seven other dams. Among the considered cases, the standard error of the TDG estimation considering the energy dissipation efficiency was 5.7%, and those for the correlations obtained using the USACE equations were 13.0% and 10.0%. The findings indicated that the energy dissipation efficiency considerably influenced the TDG level, and its consideration helped enhance the precision of the TDG estimation. Finally, the generality of this approach and future work were discussed.


Author(s):  
Jun-ichi SAKAMOTO ◽  
Haruhiko MATSUMOTO ◽  
Kesayoshi HADANO ◽  
Takuzo AMANO ◽  
Kiyonobu MITSUNOBU

2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


Sign in / Sign up

Export Citation Format

Share Document