scholarly journals REDUCTION ON WAVE OVERTOPPING ON A SMOOTH DIKE BY MEANS OF A PARAPET

2011 ◽  
Vol 1 (32) ◽  
pp. 6 ◽  
Author(s):  
Koen Van Doorslaer ◽  
Julien De Rouck

A return wall or parapet is a very efficient construction built to reduce wave overtopping over sea structures. One of its main advantages is that this relative small construction can be built in a dike without increasing the crest height yet creating a major reduction in wave overtopping. In this paper only non-breaking waves attacking smooth dikes are investigated. A normal smooth dike, a smooth dike with vertical wall and a smooth dike with parapet have been tested. The results lead to reduction factors for a vertical wall or a parapet that can be introduced in the van der Meer formulas for wave overtopping over smooth dikes. The optimal geometry of the parapet has been subject of the research as well.

2013 ◽  
Vol 405-408 ◽  
pp. 1463-1471 ◽  
Author(s):  
Xing Ye Ni ◽  
Wei Bin Feng

To obtain a more detailed description of wave overtopping, a 2-D numerical wave tank is presented based on an open-source SPH platform named DualSPHysics, using a source generation and absorption technology suited for SPH methods with analytical relaxation approach. Numerical simulation of regular wave run-up and overtopping on typical sloping dikes is carried out and satisfactory agreements are shown between numerical results and experimental data. Another overtopping simulation of regular wave is conducted against six different types of seawalls (vertical wall, curved wall, recurved wall, 1:3 slope with smooth face, 1:1.5 slope with smooth face and 1:1.5 slope with stepped-face), which represents the details of various breaking waves interacting with different seawalls, and the average deviation of wave overtopping rate is 6.8%.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1035 ◽  
Author(s):  
Nils B. Kerpen ◽  
Talia Schoonees ◽  
Torsten Schlurmann

Wave overtopping—i.e., excess of water over the crest of a coastal protection infrastructure due to wave run-up—of a smooth slope can be reduced by introducing slope roughness. A stepped revetment ideally constitutes a slope with uniform roughness and can reduce overtopping volumes of breaking waves up to 60% compared to a smooth slope. The effectiveness of the overtopping reduction decreases with increasing Iribarren number. However, to date a unique approach applicable for a wide range of boundary conditions is still missing. The present paper: (i) critically reviews and analyzes previous findings; (ii) contributes new results from extensive model tests addressing present knowledge gaps; and (iii) proposes a novel empirical formulation for robust prediction of wave overtopping of stepped revetments for breaking and non-breaking waves. The developed approach contrasts a critical assessment based on parameter ranges disclosed beforehand between a smooth slope on the one hand and a plain vertical wall on the other. The derived roughness reduction coefficient is developed and adjusted for a direct incorporation into the present design guidelines. Underlying uncertainties due to scatter of the results are addressed and quantified. Scale effects are highlighted.


Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


2019 ◽  
Vol 878 ◽  
pp. 481-501 ◽  
Author(s):  
James G. Herterich ◽  
Frédéric Dias

Recent modelling work has shown that abrupt bathymetric transitions can produce dramatic amplifications of long waves, under the influence of both nonlinearity and dispersion. Here, the evolution of wave packets towards a vertical wall over a varying bathymetry is investigated with a one-dimensional conformal-mapping spectral code. In this system, wave breaking, runup and reflection, wave interference and bathymetric effects are highlighted. Wave breaking is examined with respect to geometric, kinematic and energetic conditions, with consistent results. The breaking strength is characterized for spilling and plunging based on initial wave period and amplitude. Non-breaking waves are amplified by reflection, interference and the bathymetry leading to large runups. In a typical example inspired by a real-world bathymetry, the maximum runup amplification approaches a factor of 12 – large enough for a 3 m amplitude wave to overtop a 30 m cliff.


1992 ◽  
pp. 291-297 ◽  
Author(s):  
M. J. Cooker ◽  
D. H. Peregrine
Keyword(s):  

Author(s):  
Dogan Kisacik ◽  
Gulizar Ozyurt Tarakcioglu ◽  
Cuneyt Baykal ◽  
Gokhan Kaboglu

Crest modifications such as a storm wall, parapet or a bullnose are widely used to reduce the wave overtopping over coastal structures where spatial and visual demands restrict the crest heights, especially in urban areas. Although reduction factors of these modifications have been studied for sloped structures in EurOtop Manual (2016), there is limited information regarding the vertical structures. This paper presents the experimental set-up and first results of wave overtopping tests for a vertical wall with several different super structure types: a) seaward storm wall, b) sloping promenade, c) landward storm wall, d) stilling wave basin (SWB), e) seaward storm wall with parapet, f) landward storm wall on the horizontal promenade with parapet, g) landward storm wall with parapet, h) stilling wave basin (SWB) with parapet, under breaking wave conditions. The SWB is made up of a seaward storm wall (may be a double shifted rows) , a sloping promenade (basin) and a landward storm wall. The seaward storm wall is partially permeable to allow the evacuation of the water in the basin.


2018 ◽  
Vol 1 (36) ◽  
pp. 109 ◽  
Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


Sign in / Sign up

Export Citation Format

Share Document