scholarly journals PROBABILISTIC ASSESSMENT OF PORT OPERABILITY UNDER CLIMATE CHANGE

Author(s):  
Paula Camus ◽  
Antonio Tomás ◽  
Cristina Izaguirre ◽  
Beatriz Rodriguez ◽  
Gabriel Díaz-Hernández ◽  
...  

Harbors are strategic infrastructures within the local, regional and global economy. The objective of a harbor is to guarantee the safety, serviceability and exploitation of all activities, for each element, and in all project phases. Within this context, Level III Verification Method is recommended for the probabilistic evaluation of failure modes and operational stoppage modes (downtime) of maritime structures; and the Spanish Recommendations for Maritime Structures (ROM) proposes a simulation method based on the Monte Carlo technique. On the other hand, ports are susceptible to impacts from climate change driven processes, like sea level rise (SLR) or changes in waves and storm surges. These impacts could reduce the functionality of ports and therefore negatively affect the effectiveness of supply chain network. In this work, we focus on a very long-term probabilistic assessment of the port operability due to wave agitation inside the port including the potential effects of climate change.

2011 ◽  
Vol 39 (1) ◽  
pp. 1-3 ◽  
Author(s):  
ARNAUD BÉCHET ◽  
MANUEL RENDÓN-MARTOS ◽  
MIGUEL ÁNGEL RENDÓN ◽  
JUAN AGUILAR AMAT ◽  
ALAN R. JOHNSON ◽  
...  

The conservation of many species depends on sustainable economic activities that shape their habitats. The economic use of these anthropogenic habitats may change quickly owing to world trade globalization, market reorientations, price volatility or shifts in subsidy policies. The recent financial crisis has produced a global impact on the world economy. How this may have affected the use of habitats beneficial to biodiversity has not yet been documented. However, consequences could be particularly acute for species sensitive to climate change, jeopardizing long-term conservation efforts.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251489
Author(s):  
Patrick A. Breach ◽  
Slobodan P. Simonovic

The ANEMI model is an integrated assessment model of global change that emphasizes the role of water resources. The model is based on the principles of system dynamics simulation to analyze changes in the Earth system using feedback processes. Securing water resources for the future is a key issue of global change, and ties into global systems of population growth, climate change, carbon cycle, hydrologic cycle, economy, energy production, land use and pollution generation. Here the third iteration of the model–ANEMI3 is described, along with the methods used for parameter estimation and model testing. The main differences between ANEMI3 and previous versions include: (i) implementation of the energy-economy system based on the principles of system dynamics simulation; (ii) incorporation of water supply as an additional sector in the global economy that parallels the production of energy; (iii) inclusion of climate change effects on land yield and potentially arable land for food production, and (iv) addition of nitrogen and phosphorus based nutrient cycles as indicators of global water quality, which affect the development of surface water supplies. The model is intended for analyzing long-term global feedbacks which drive global change. Because of this, there are limitations related to the spatial scale that is used. However, the model’s simplicity can be considered a strength, as it allows for the driving feedbacks to be more easily identified. The model in its current form allows for a variety of scenarios to be created to address global issues such as climate change from an integrated perspective, or to examine the change in one model sector on Earth system behaviour. The endogenous structure of the model allows for global change to be driven entirely by model structure rather than exogenous inputs. The new additions to the ANEMI3 model are found to capture long term trends associated with global change, while allowing for the development of water supplies to be represented using an integrated approach considering global economy and surface water quality.


2020 ◽  
Vol 15 (2) ◽  
pp. 148-167

In 2018 businesses, households and government enterprises throughout the global economy spent an estimated €7.4 trillion to meet the many demands for various energy services. Current projec­tions suggest that the present scale of annual expenditures may increase by more than 60 per­cent to €12.0 trillion by 2050 (with all costs expressed in real 2018 values). Although the global economy derives important benefits from the purchase of many energy services, the inefficient use of energy also creates an array of costs and constraints that burden our social and economic well-being. Among these costs or constraints are increased health costs, air pollution, climate change and a less productive economy—especially over the long term. Yet there is good news within the countless energy markets throughout the global economy. Whether improved lighting in homes and schools, transporting people and goods more efficiently, or powering the many industrial processes within any given nation, there are huge opportunities to improve the productive use of energy in ways that reduce total economic costs. And those same energy efficiency upgrades can also reduce greenhouse gas emissions that drive climate change, as well as lessen other impacts on both people and the global environment. However, as this manuscript suggests, it will take an adequately funded set of smart policies and effective programs, including a skilled work force, to drive the optimal scale of energy efficiency investments.


2019 ◽  
Vol 44 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Tao Ji ◽  
Guosheng Li

There is growing interest in storm surge activity related to catastrophic events and their unintended consequences in terms of casualties and damage around the world and in increasing populations and issues along coastal areas in the context of global warming and rising sea levels. Accordingly, knowledge on storm surge monitoring has progressed significantly in recent years, and this review, focused on monitoring the spatial and temporal variability of storm surges, responds to the need for a synthesis. Three main components are presented in the review: (1) monitoring storm surges from the viewpoint of three effective approaches; (2) understanding the challenges faced by the three monitoring approaches to increase our awareness of monitoring storm surges; (3) identifying three research priorities and orientations to provide new ideas in future storm surge monitoring. From the perspective of monitoring approaches, recent progress was achieved with respect to tide gauges, satellite altimetry and numerical simulation. Storm surge events can nowadays be identified accurately, and the surge heights can be calculated based on long-term tide gauge observations. The changing frequency and intensity of storm surge activity, combined with statistical analysis and climatology, can be used to enable a better understanding of the possible regional or global long-term trends. Compared with tidal observation data, satellite altimetry has the advantage of providing offshore sea level information to an accuracy of 10 cm. In addition, satellite altimetry can provide more effective observations for studying storm surges, such as transient surge data of the deep ocean. Simultaneously, the study of storm surges via numerical simulation has been further developed, mainly reflected in the gradual improvement of simulation accuracy but also in the refinement of comprehensive factors affecting storm surge activity. However, from the above approaches, storm surge activity monitoring cannot fully reflect the spatial and temporal variability of storm surges, especially the spatial changes at a regional or global scale. In particular, compared to global storm surge, tide gauges and satellite altimeters are relatively sparse, and the spatial distribution is extremely uneven, which often seriously restricts the overall understanding of the spatial distribution features of storm surge activity. Numerical models can be used as a tool to overcome the above-mentioned shortcomings for storm surge monitoring, as they provide real-time spatiotemporal features of storm surge events. But long-term numerical hindcast of tides and surges requires an extremely high computational effort. Considering the shortcomings of the above approaches and the impact of climate change, there is no clear approach to remedy the framework for studying the spatial and temporal characteristics of global or regional storm surge activity at a climatic scale. Therefore, we show how new insights or techniques are useful for the monitoring of future crises. This work is especially important in planning efforts by policymakers, coastal managers, civil protection managers and the general public to adapt to climate change and rising sea levels.


Author(s):  
Jessica Podoski ◽  
Dane Sjoblom ◽  
Shelley Franklin

Essential transportation infrastructure around the globe will be increasingly compromised by interrelated climate change impacts. Due to geographic isolation and limited natural resources, the economy and security of many Pacific territories and nations, including American Samoa, depend heavily on the resilience of these transportation infrastructure systems. Of particular relevance are the coastal impacts of climate changes such as sea level rise and storm surges which will threaten transportation infrastructure including both temporary and long-term flooding of airports, ports and harbors, and roads which are vital lifelines for trans-Pacific, interisland, and intra-island commerce and community services. The majority of the transportation assets in American Samoa are along a narrow coastal plain backed by steep topography, precluding relocation or retreat in response to increased coastal flooding accompanying a changing climate.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/k-qJPMVwvVc


2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


Author(s):  
Nguyen Thi Thuc An ◽  
Dau Kieu Ngoc Anh

The 2018 Nobel Economics Prize was awarded to two American economists - William D. Nordhaus and Paul M. Romer - who designed methods for better assessing environmental issues and technological advances on growth. This year’s Laureates, Nordhaus was the first person to create an intergrated model to assess interactions between society and nature and Romer laid the foundation for what is now called endogenous growth theory. According to the Swedish Royal Academy of Sciences, these two macroeconomists’ research have helped “significantly broaden the scope of economic analysis by constructing models that explain how the market economy interacts with nature and knowledge” which integrates climate change measures into long-term sustainable economic growth. Keywords Nobel in economics, William D. Nordhaus, Paul M. Romer, climate change, endogenous growth theory, economic growth References [1] Y Vân (2018), “Lý lịch 'khủng' của hai nhà khoa học vừa giành giải Nobel Kinh tế 2018”, Vietnambiz, đăng tải ngày 08/10/2018, https://vietnambiz.vn/ly-lich-khung-cua-hai-nha-khoa-hoc-vua-gianh-giai-nobel-kinh-te-2018-95776.html[2] Jonas O. Bergman, Rich Miller (2018), “Nordhaus, Romer Win Nobel for Thinking on Climate, Innovation”, đăng tải ngày 8/10/2018, https://www.bloomberg.com/news/articles/2018-10-08/nordhaus-romer-win-2018-nobel-prize-in-economic-sciences [3] Antonin Pottier (2018), “Giải Nobel” William Nordhaus có thật sự nghiêm túc?”, Nguyễn Đôn Phước dịch, đăng tải ngày 11/10/2018, http://www.phantichkinhte123.com/2018/10/giai-nobel-william-nordhaus-co-that-su.html[4] Thăng Điệp (2018), “Giải Nobel kinh tế 2018 về tay hai người Mỹ”, đăng tải ngày 8/10/2018, http://vneconomy.vn/giai-nobel-kinh-te-2018-ve-tay-hai-nguoi-my-20181008185809239.htm[5] Lars P. Syll (2018), “Cuối cùng - Paul Romer cũng có được giải thưởng Nobel”, Huỳnh Thiện Quốc Việt dịch, đăng tải ngày 14/10/2018, http://www.phantichkinhte123.com/2018/10/cuoi-cung-paul-romer-cung-co-uoc-giai.html[6] Phương Võ (2018), “Nobel Kinh tế 2018: Chạm tới bài toán khó của thời đại”, đăng tải ngày 9/10/2018, https://nld.com.vn/thoi-su-quoc-te/nobel-kinh-te-2018-cham-toi-bai-toan-kho-cua-thoi-dai-20181008221734228.htm[7] Đông Phong (2018), “Nobel Kinh tế cho giải pháp phát triển bền vững và phúc lợi người dân”, đăng tải ngày 8/10/2018, https://news.zing.vn/nobel-kinh-te-cho-giai-phap-phat-trien-ben-vung-va-phuc-loi-nguoi-dan-post882860.html[8] Thanh Trúc (2018), “Giải Nobel kinh tế 2018: Thay đổi tư duy về biến đổi khí hậu”, https://tusach.thuvienkhoahoc.com/wiki/Gi%E1%BA%A3i_Nobel_kinh_t%E1%BA%BF_2018:_Thay_%C4%91%E1%BB%95i_t%C6%B0_duy_v%E1%BB%81_bi%E1%BA%BFn_%C4%91%E1%BB%95i_kh%C3%AD_h%E1%BA%ADu[9] Cẩm Anh (2018), “Nobel kinh tế 2018: Lời giải cho tăng trưởng kinh tế bền vững”, đăng tải ngày 11/10/2018, http://enternews.vn/nobel-kinh-te-2018-loi-giai-cho-tang-truong-kinh-te-ben-vung-137600.html.


2019 ◽  
pp. 79-95
Author(s):  
N.E. Terentiev

Based on the latest data, paper investigates the dynamics of global climate change and its impact on economic growth in the long-term. The notion of climate risk is considered. The main directions of climate risk management policies are analyzed aimed, first, at reducing anthropogenic greenhouse gas emissions through technological innovation and structural economic shifts; secondly, at adaptation of population, territories and economic complexes to the irreparable effects of climate change. The problem of taking into account the phenomenon of climate change in the state economic policy is put in the context of the most urgent tasks of intensification of long-term socio-economic development and parrying strategic challenges to the development of Russia.


Sign in / Sign up

Export Citation Format

Share Document