scholarly journals Common Mycelium Network of Mycorrhizas Alters Plant Biomass and Soil Properties between Trifoliate Orange Seedlings

2016 ◽  
Vol 28 (4) ◽  
pp. 257
Author(s):  
YanXing YAO ◽  
YouGen Lou ◽  
ZeZhi Zhang ◽  
Li Jin ◽  
ChangLin Li ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1896
Author(s):  
Rui-Cheng Liu ◽  
Ying-Ning Zou ◽  
Kamil Kuča ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
...  

Glomalin-related soil protein (GRSP) is a specific glycoprotein secreted into the soil by hyphae and spores of arbuscular mycorrhizal fungi that have many potential functions. It is not clear whether exogenous GRSP has an effect on plant growth and soil properties or whether the effects are related to the type of GRSP used. In this study, trifoliate orange (Poncirus trifoliata L. Raf.) seedlings were used to analyze the effects of easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP (DE-GRSP) at a quarter-, half-, and full-strength concentration on shoot and root biomass as well as soil properties The results showed that, at different strengths, exogenous EE-GRSR significantly increased shoot and root biomass compared to the control, which displayed the most significant effects from the half-strength EE-GRSP. In contrast, DE-GRSP, at various strengths, significantly reduced shoot and root biomass. Furthermore, the application of exogenous EE-GRSP stimulated soil water-stable aggregate (WSA) content at 2–4 mm and 0.5–1 mm sizes, while DE-GRSP strongly reduced WSA content at the 2–4 mm, 1–2 mm, 0.5–1 mm, and 0.25–0.5 mm sizes, consequently leading to an increase or decrease in the WSA stability, according to the mean weight diameter. However, exogenous EE-GRSP decreased soil pH and DE-GRSP increased it, which was related to WSA stability. Exogenous EE-GRSP almost significantly increased soil acidic, neutral, and alkaline phosphatase activity at different strengths, while exogenous DE-GRSP, also at different strengths, significantly inhibited soil acidic phosphatase activity. The application of both exogenous EE-GRSP and DE-GRSP increased the organic carbon content of the soil. This study concluded that exogenous GRSP exerted differential effects on plant biomass and soil properties, and EE-GRSP can be considered as a soil stimulant for use in citrus plants. To our knowledge, this is the first report on the negative effects of exogenous DE-GRSP on plant biomass and soil properties.


2021 ◽  
Vol 13 (11) ◽  
pp. 6221
Author(s):  
Muyuan Ma ◽  
Yaojun Zhu ◽  
Yuanyun Wei ◽  
Nana Zhao

To predict the consequences of environmental change on the biodiversity of alpine wetlands, it is necessary to understand the relationship between soil properties and vegetation biodiversity. In this study, we investigated spatial patterns of aboveground vegetation biomass, cover, species diversity, and their relationships with soil properties in the alpine wetlands of the Gannan Tibetan Autonomous Prefecture of on the Qinghai-Tibetan Plateau, China. Furthermore, the relative contribution of soil properties to vegetation biomass, cover, and species diversity were compared using principal component analysis and multiple regression analysis. Generally, the relationship between plant biomass, coverage, diversity, and soil nutrients was linear or unimodal. Soil pH, bulk density and organic carbon were also significantly correlated to plant diversity. The soil attributes differed in their relative contribution to changes in plant productivity and diversity. pH had the highest contribution to vegetation biomass and species richness, while total nitrogen was the highest contributor to vegetation cover and nitrogen–phosphorus ratio (N:P) was the highest contributor to diversity. Both vegetation productivity and diversity were closely related to soil properties, and soil pH and the N:P ratio play particularly important roles in wetland vegetation biomass, cover, and diversity.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142371 ◽  
Author(s):  
Ze-Zhi Zhang ◽  
You-Gen Lou ◽  
Dao-Juan Deng ◽  
Mohammed Mahabubur Rahman ◽  
Qiang-Sheng Wu

Author(s):  
Gong Tian-zhi ◽  
Zhang De-jian

To explore the influence of phosphorus (P), indolebutyric acid (IBA, Auxin) and Naphthylphthalamic acid (NPA, Auxin transport inhibitor) on plant lateral root (LR) formation, Poncirus trifoliata seedlings at two P levels, low P (LP) and control treatment (CK), which was applied with IBA and NPA, and the regulative effects of P level, IBA and NPA on LR formation of trifoliate orange were investigated. The results showed that LP level significantly reduced the plant biomass, LR number and length. NPA significantly decreased the plant biomass, LR number and length, while IBA did not significantly influence these parameters. These data suggested that auxin signaling pathway could be involved in the regulation of P level on LR formation, and the auxin transportation should be the key factor in LR formation of trifoliate orange.


2021 ◽  
Author(s):  
Marc Wehrhan ◽  
Daniel Puppe ◽  
Danuta Kaczorek ◽  
Michael Sommer

Abstract. Various studies have been performed to quantify silicon (Si) stocks in plant biomass and related Si fluxes in terrestrial biogeosystems. Most of these studies were performed at relatively small plots with an intended low heterogeneity in soils and plant canopy composition, and results were extrapolated to larger spatial units up to global scale implicitly assuming similar environmental conditions. However, the emergence of new technical features and increasing knowledge on details in Si cycling leads to a more complex picture at landscape or catchment scales. Dynamic and static soil properties change along the soil continuum and might influence not only the species composition of natural vegetation, but its biomass distribution and related Si stocks. Maximum Likelihood (ML) classification was applied to multispectral imagery captured by an Unmanned Aerial System (UAS) aiming the identification of land cover classes (LCC). Subsequently, the Normalized Difference Vegetation Index (NDVI) and ground-based measurements of biomass were used to quantify aboveground Si stocks in two Si accumulating plants (Calamagrostis epigejos and Phragmites australis) in a heterogeneous catchment and related corresponding spatial patterns of these stocks to soil properties. We found aboveground Si stocks of C. epigejos and P. australis to be surprisingly high (maxima of Si stocks reach values up to 98 g Si m−2), i.e., comparable to or markedly exceeding reported values for the Si storage in aboveground vegetation of various terrestrial ecosystems. We further found spatial patterns of plant aboveground Si stocks to reflect spatial heterogeneities in soil properties. From our results we concluded that (i) aboveground biomass of plants seems to be the main factor of corresponding phytogenic Si stock quantities and (ii) a detection of biomass heterogeneities via UAS-based remote sensing represents a promising tool for the quantification of lifelike phytogenic Si pools at landscape scales.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 623 ◽  
Author(s):  
Prakriti Bista ◽  
Rajan Ghimire ◽  
Stephen Machado ◽  
Larry Pritchett

Biochar can improve soil health and crop productivity. We studied the response of soil properties and wheat growth to four rates of wood biochar (0, 11.2, 22.4, and 44.8 Mg ha−1) and two fertilizer rates [no fertilizer and fertilizer (90 kg N ha−1, 45 kg P ha−1, and 20 kg S ha−1)]. Biochar application increased soil organic matter (SOM), soil pH, phosphorus (P), potassium (K), sulfur (S) contents, and the shoot and root biomass of wheat. However, these responses were observed at biochar rates below 22.4 Mg ha−1, particularly in treatments without fertilizer. In fertilizer-applied treatments, soil nitrate levels decreased with an increase in biochar rates, mainly due to better crop growth and high nitrate uptake. However, without N addition, the high C:N ratio (500:1) possibly increased nutrient tie-up, reduced plant biomass, and SOM buildup at the highest biochar rate. Based on these results, we recommend biochar rates of about 22.4 Mg ha−1 and below for Walla Walla silt loams.


2015 ◽  
Vol 61 (4) ◽  
pp. 195-203 ◽  
Author(s):  
Feida Sun ◽  
Wenye Chen ◽  
Lin Liu ◽  
Wei Liu ◽  
Yimin Cai ◽  
...  

2011 ◽  
Vol 14 ◽  
pp. 69 ◽  
Author(s):  
Joanna Strzelecka ◽  
Michał Dąbrowski ◽  
Piotr Hulisz ◽  
Agnieszka Piernik

2011 ◽  
Vol 39 (2) ◽  
pp. 64 ◽  
Author(s):  
Ying-Ning ZOU ◽  
Qiang-Sheng WU

Citrus plants are sensitive to salinity, and thus employing new approaches to alleviate salt damage are necessary. The present study evaluated the effect of two arbuscular mycorrhizal fungi (AMF), Glomus mosseae and G. versiforme, on leaf osmotic adjustment of trifoliate orange (Poncirus trifoliata) seedings exposed to 100 mM NaCl. Salinity significantly inhibited mycorrhizal colonization, plant biomass and leaf relative water content, whereas the reduce of plant biomass was notably alleviated by the mycorrhizal colonization. Mycorrhizal seedlings exhibited significantly lower Na+ and Ca2+ concentrations, whilst also recorded higher K+ concentration and K+/Na+, Ca2+/Na+ and Mg2+/Na+ ratios at both salinity levels. Under salinity stress, mycorrhizal symbiosis markedly decreased sucrose concentrations of leaves and also increased glucose, fructose and proline concentrations of leaves. The results suggest that arbuscular mycorrhizas improved leaf osmotic adjustment responses of the seedlings to salt stress, thus enhancing salt tolerance of mycorrhizal plants.


Sign in / Sign up

Export Citation Format

Share Document