scholarly journals Study of Hopcalite (CuMnOx) Catalysts Prepared Through A Novel Route for the Oxidation of Carbon Monoxide at Low Temperature

Author(s):  
Subhashish Dey ◽  
Ganesh Chandra Dhal ◽  
Devendra Mohan ◽  
Ram Prasad

Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer. The gas is produced by incomplete combustion of carbonaceous fuel. Recent studies have shown that hopcalite group is one of the promising catalysts for CO oxidation at low temperature. In this study, hopcalite (CuMnOx) catalysts were prepared by KMnO4 co-precipitation method followed by washing, drying the precipitate at different temperatures (22, 50, 90, 110, and 120 oC) for 12 h in an oven and subsequent calcination at 300 oC in stagnant air, flowing air and in a reactive gas mixture of (4.5% CO in air) to do the reactive calcination (RC). The prepared catalysts were characterized by XRD, FTIR, SEM-EDX, XPS, and BET techniques. The activity of the catalysts was evaluated in a tubular reactor under the following conditions: 100 mg catalyst, 2.5% CO in air, total flow rate 60 mL/min and temperature varying from ambient to a higher value, at which complete oxidation of CO was achieved. The order of calcination strategies based on activity for hopcalite catalysts was observed to be as: RC > flowing air > stagnant air. In the kinetics study of CuMnOx catalyst prepared in RC conditions the frequency factor and activation energy were found to be 5.856×105 (g.mol)/(gcat.h) and 36.98 kJ/gmol, respectively. Copyright © 2017 BCREC Group. All rights reservedReceived: 28th December 2016; Revised: 19th April 2017; Accepted: 19th April 2017; Available online: 27th October 2017; Published regularly: December 2017How to Cite: Dey, S., Dhal, G.C., Mohan, D., Prasad, R. (2017). Study of Hopcalite (CuMnOx) Catalysts Prepared through A Novel Route for the Oxidation of Carbon Monoxide at Low Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 393-407 (doi:10.9767/bcrec.12.3.882.393-407) 

Author(s):  
Suverna Trivedi ◽  
Ram Prasad ◽  
S. Chadha

This paper describes the kinetics of catalytic air oxidation of propane. The kinetics data were collected in a plug flow tubular reactor. The experiments were performed over the NiCo2O4 catalyst prepared by co-precipitation method followed by calcination at 400 oC. The kinetic data were collected under the following conditions: 200 mg of catalyst, 2.5 % of propane in air, total flow rate of 60 mL/min, and temperature ranges of 130-170 oC. The data were fitted to the power law rate equation. The activation    energy and frequency factor were found to be 59.3 kJ/g mol and 2.9×108 (mol)0.47.L0.53/g cat.h, respectively. Copyright © 2017 BCREC Group. All rights reservedReceived: 20th November 2016; Revised: 26th February 2017; Accepted: 26th February 2017How to Cite: Trivedi, S., Prasad, R., Chadha, S. (2017). Oxidation Kinetics of Propane-Air Mixture over NiCo2O4 Catalyst Emitted from LPG Vehicles. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 191-196 (doi:10.9767/bcrec.12.2.798.191-196)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.798.191-196 


2013 ◽  
Vol 829 ◽  
pp. 737-741 ◽  
Author(s):  
Mohammad Javad Pourhosseini Asl ◽  
Ali Ghasemi ◽  
Gholam Reza Gordani

In this study, the low temperature synthesis of barium-Z type hexaferrite nanoparticles was considered. In this manner, the Z-type hexaferrite with the chemical composition of Ba3 Co1.7 Ni0.1 Cu0.1 Mn0.1 Fe24 O41 was synthesized at different temperatures of 900, 1000 and 1100 0C for 3hr. An X-Ray diffraction, field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer (VSM) analysis were carried out to investigate structural and magnetic properties of samples. XRD results showed that the Z-type ferrite phase was formed in all samples. However, At the low temperature synthesis (T=900 0C), the Ba2Me2Fe12O22 and BaFe2O4 phases were also detected. FE-SEM micrographs showed that with increasing the synthesis temperature, the particle size was increased. It was found that the saturation of magnetization was slightly increased from 54 to 55. 5emugr with an increase in synthesis temperature from 900 to 11000C, while the coercivity increased initially from 670 Oe to 860 Oe and then decreased to 488 Oe. The results also indicated that the temperature of 10000C was the optimum synthesis temperature of Ba-Z type hexaferrite nanoparticles, which was much lower than that of Z-type hexaferrite produced by previous researchers.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 238
Author(s):  
Vo Quang Mai ◽  
Nguyen Anh Tien

In this research, we investigate and discuss the characteristics of HoFeO3 nanoparticles synthesized by the co-precipitation method at low temperature (t° ≤ 4 °C). The single-phase HoFeO3 samples with the orthorhombic structure formed after annealing of the precipitates at different temperatures up to 950 °C. The annealed HoFeO3 nanoparticles have an average crystal size of 10–20 nm (SEM, TEM). UV-Vis spectrum of HoFeO3 sample annealed at 750 °C showed strong UV and Vis absorption with small optical energy gap (Eg = 1.56 eV). In the range temperature of 100–300 K, the HoFeO3 samples showed superparamagnetic behaviour at 5 kOe with high magnetization (Ms = 1.3–2.4 emu/g) and very low susceptibility (χ << 1).


2021 ◽  
Vol 244 ◽  
pp. 117955
Author(s):  
Mohamed S. Hamdy ◽  
Badria M. Al-Shehri ◽  
Murad Eissa ◽  
Fahad A. Alharthi ◽  
Abdulaziz Ali Alghamdi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document