scholarly journals Imputation of Rainfall Data Using the Sine Cosine Function Fitting Neural Network

Author(s):  
Po Chan Chiu ◽  
Ali Selamat ◽  
Ondrej Krejcar ◽  
King Kuok Kuok ◽  
Enrique Herrera-Viedma ◽  
...  
Author(s):  
Sanjeev Karmakar ◽  
Manoj Kumar Kowar ◽  
Pulak Guhathakurta

The objective of this study is to expand and evaluate the back-propagation artificial neural network (BPANN) and to apply in the identification of internal dynamics of very high dynamic system such long-range total rainfall data time series. This objective is considered via comprehensive review of literature (1978-2011). It is found that, detail of discussion concerning the architecture of ANN for the same is rarely visible in the literature; however various applications of ANN are available. The detail architecture of BPANN with its parameters, i.e., learning rate, number of hidden layers, number of neurons in hidden layers, number of input vectors in input layer, initial and optimized weights etc., designed learning algorithm, observations of local and global minima, and results have been discussed. It is observed that obtaining global minima is almost complicated and always a temporal nervousness. However, achievement of global minima for the period of the training has been discussed. It is found that, the application of the BPANN on identification for internal dynamics and prediction for the long-range total annual rainfall has produced good results. The results are explained through the strong association between rainfall predictors i.e., climate parameter (independent parameter) and total annual rainfall (dependent parameter) are presented in this paper as well.


2021 ◽  
Author(s):  
Luísa Vieira Lucchese ◽  
Guilherme Garcia de Oliveira ◽  
Olavo Correa Pedrollo

<p>Rainfall-induced landslides have caused destruction and deaths in South America. Accessing its triggers can help researchers and policymakers to understand the nature of the events and to develop more effective warning systems. In this research, triggering rainfall for rainfall-induced landslides is evaluated. The soil moisture effect is indirectly represented by the antecedent rainfall, which is an input of the ANN model. The area of the Rolante river basin, in Rio Grande do Sul state, Brazil, is chosen for our analysis. On January 5<sup>th</sup>, 2017, an extreme rainfall event caused a series of landslides and debris flows in this basin. The landslide scars were mapped using satellite imagery. To calculate the rainfall that triggered the landslides, it was necessary to compute the antecedent rainfall that occurred within the given area. The use of satellite rainfall data is a useful tool, even more so if no gauges are available for the location and time of the rainfall event, which is the case. Remote sensing products that merge the data from in situ stations with satellite rainfall data are increasingly popular. For this research, we employ the data from MERGE (Rozante et al., 2010), that is one of these products, and is focused specifically on Brazilian gauges and territory. For each 12.5x12.5m raster pixel, the rainfall is interpolated to the points and the rainfall volume from the last 24h before the event is accumulated. This is added as training data in our Artificial Neural Network (ANN), along with 11 terrain attributes based on ALOS PALSAR (ASF DAAC, 2015) elevation data and generated by using SAGA GIS. These attributes were presented and analyzed in Lucchese et al. (2020). Sampling follows the procedure suggested in Lucchese et al. (2021, in press). The ANN model is a feedforward neural network with one hidden layer consisting of 20 neurons. The ANN is trained by backpropagation method and cross-validation is used to ensure the correct adjustment of the weights. Metrics are calculated on a separate sample, called verification sample, to avoid bias. After training, and provided with relevant information, the ANN model can estimate the 24h-rainfall thresholds in the region, based on the 2017 event only. The result is a discretized map of rainfall thresholds defined by the execution of the trained ANN. Each pixel of the resulting map should represent the volume of rainfall in 24h necessary to trigger a landslide in that point. As expected, lower thresholds (30 - 60 mm) are located in scarped slopes and the regions where the landslides occurred. However, lowlands and the plateau, which are areas known not to be prone to landslides, show higher rainfall thresholds, although not as high as expected (75 - 95 mm). Mean absolute error for this model is 16.18 mm. The inclusion of more variables and events to the ANN training should favor achieving more reliable outcomes, although, our results are able to show that this methodology has potential to be used for landslide monitoring and prediction.</p>


2018 ◽  
Vol 73 ◽  
pp. 05017
Author(s):  
Yasin Hasbi ◽  
Warsito Budi ◽  
Santoso Rukun

Prediction of rainfall data by using Feed Forward Neural Network (FFNN) model is proposed. FFNN is a class of neural network which has three layers for processing. In time series prediction, including in case of rainfall data, the input layer is the past values of the same series up to certain lag and the output layer is the current value. Beside a few lagged times, the seasonal pattern also considered as an important aspect of choosing the potential input. The autocorrelation function and partial autocorrelation function patterns are used as aid of selecting the input. In the second layer called hidden layer, the logistic sigmoid is used as activation function because of the monotonic and differentiable. Processing is done by the weighted summing of the input variables and transfer process in the hidden layer. Backpropagation algorithm is applied in the training process. Some gradient based optimization methods are used to obtain the connection weights of FFNN model. The prediction is the output resulting of the process in the last layer. In each optimization method, the looping process is performed several times in order to get the most suitable result in various composition of separating data. The best one is chosen by the least mean square error (MSE) criteria. The least of in-sample and out-sample predictions from the repeating results been the base of choosing the best optimization method. In this study, the model is applied in the ten-daily rainfall data of ZOM 136 Cokrotulung Klaten. Simulation results give a consecution that the more complex architecture is not guarantee the better prediction.


2019 ◽  
Vol 125 ◽  
pp. 23015
Author(s):  
Hasbi Yasin ◽  
Budi Warsito ◽  
Rukun Santoso ◽  
Arief Rachman Hakim

Forecasting of rainfall trends is essential for several fields, such as airline and ship management, flood control and agriculture. The rainfall data were recorded several time simultaneously at a number of locations and called the space-time data. Generalized Space Time Autoregressive (GSTAR) model is one of space-time models used to modeling and forecasting the rainfall. The aim of this research is to propose the nonlinear space-time model based on hybrid of GSTAR, Feed Forward Neural Network (FFNN) and Particle Swarm Optimization (PSO) and it called GSTAR-NN-PSO. In this model, input variable of the FFNN was obtained from the GSTAR model. Then use PSO to initialize the weight parameter in the FFNN model. This model is applied for forecasting monthly rainfall data in Jepara, Kudus, Pati and Grobogan, Central Java, Indonesia. The results show that the proposed model gives more accurate forecast than the linear space-time model, i.e. GSTAR and GSTAR-PSO. Moreover, further research about space-time models based on GSTAR and Neural Network is needed to improving the forecast accuracy especially the weight matrix in the GSTAR model.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yongli Zhang ◽  
Jianguang Niu ◽  
Sanggyun Na

The nonlinear function fitting is an essential research issue. At present, the main function fitting methods are statistical methods and artificial neural network, but statistical methods have many inherent strict limits in application, and the back propagation (BP) neural network used widely has too many optimized parameters. For the gaps and lacks of existing researches, the FOA-GRNN was proposed and compared with the GRNN, GA-BP, PSO-BP, and BP through three nonlinear functions from simplicity to complexity for verifying the accuracy and robustness of the FOA-GRNN. The experiment results showed that the FOA-GRNN had the best fitting precision and fastest convergence speed; meanwhile the predictions were stable and reliable in the Mexican Hat function and Rastrgrin function. In the most complex Griewank function, the prediction of FOA-GRNN was becoming unstable and the model did not show better than GRNN model adopting equal step length searching method, but the performance of FOA-GRNN is superior to that of GA-BP, PSO-BP, and BP. The paper presents a new approach to optimize the parameter of GRNN and also provides a new nonlinear function fitting method, which has better fitting precision, faster calculation speed, more few adjusted parameters, and more powerful processing ability for small samples. The processing capacity of FOA for treating high complex nonlinear function needs to be further improved and developed in the future study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maulin Raval ◽  
Pavithra Sivashanmugam ◽  
Vu Pham ◽  
Hardik Gohel ◽  
Ajeet Kaushik ◽  
...  

AbstractAustralia faces a dryness disaster whose impact may be mitigated by rainfall prediction. Being an incredibly challenging task, yet accurate prediction of rainfall plays an enormous role in policy making, decision making and organizing sustainable water resource systems. The ability to accurately predict rainfall patterns empowers civilizations. Though short-term rainfall predictions are provided by meteorological systems, long-term prediction of rainfall is challenging and has a lot of factors that lead to uncertainty. Historically, various researchers have experimented with several machine learning techniques in rainfall prediction with given weather conditions. However, in places like Australia where the climate is variable, finding the best method to model the complex rainfall process is a major challenge. The aim of this paper is to: (a) predict rainfall using machine learning algorithms and comparing the performance of different models. (b) Develop an optimized neural network and develop a prediction model using the neural network (c) to do a comparative study of new and existing prediction techniques using Australian rainfall data. In this paper, rainfall data collected over a span of ten years from 2007 to 2017, with the input from 26 geographically diverse locations have been used to develop the predictive models. The data was divided into training and testing sets for validation purposes. The results show that both traditional and neural network-based machine learning models can predict rainfall with more precision.


Sign in / Sign up

Export Citation Format

Share Document