scholarly journals Effect of Drying Methods on Phytochemical Composition of Orange Fruit (Citrus sinensis, L.) Peel Flour in Biscuit Making

Author(s):  
Rwubatse, Bernard ◽  
◽  
Akubor, Peter Issah ◽  
Mugabo, Emmanuel
LWT ◽  
2020 ◽  
Vol 125 ◽  
pp. 109205 ◽  
Author(s):  
Salvatore Multari ◽  
Ilaria Carafa ◽  
Laura Barp ◽  
Marco Caruso ◽  
Concetta Licciardello ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Brittany M. Xu ◽  
George L. Baker ◽  
Paul J. Sarnoski ◽  
Renée M. Goodrich-Schneider

Volatiles from huanglongbing (HLB) symptomatic and asymptomatic cold pressed orange oils from Florida Hamlin and Valencia fruit were assessed. Qualitative gas-liquid chromatography studies showed the presence of several compounds (β-longifolene, perillene, and 4-decenal) which are not commonly identified in Citrus sinensis (L.) Osbeck oils. Oils derived from huanglongbing symptomatic fruit had lower concentrations of linalool, decanal, citronellol, neral, geranial, carvone, dodecanal, and 2-decenal and higher concentrations of citronellal compared to asymptomatic fruit. A comparison to historic literature of orange oil investigations before HLB was of issue in Florida orange crops showed lower levels of linalool, decanal, neral, and geranial in Hamlin peel oil samples, as well as higher levels of dodecanal. Valencia peel oil samples showed lower concentrations of linalool and increased concentration of citronellol and dodecanal. As a result of huanglongbing (HLB) phenomena, the concentrations of several important volatiles found in Hamlin and Valencia peel oil profiles have changed compared to historic values. Differences in volatile concentrations of symptomatic and asymptomatic HLB affected peel oil compounds in orange fruit are identified.


2003 ◽  
Vol 128 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Jacqueline K. Burns ◽  
Luis V. Pozo ◽  
Covadonga R. Arias ◽  
Brandon Hockema ◽  
Vidhya Rangaswamy ◽  
...  

Coronatine is a polyketide phytotoxin produced by several plant pathogenic Pseudomonas spp. The effect of coronatine on abscission in Citrus sinensis L. Osbeck `Hamlin' and `Valencia' orange fruit, leaves, fruitlets, and flowers was determined. Coronatine at 200 mg·L-1 significantly reduced fruit detachment force of mature fruit, and did not cause fruitlet or flower loss in `Valencia'. Cumulative leaf loss was 18% with coronatine treatment. Coronafacic acid or coronamic acid, precursors to coronatine in Pseudomonas syringae, did not cause mature fruit abscission. Ethylene production in mature fruit and leaves was stimulated by coronatine treatment, and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and 12-oxo-phytodienoate reductase (12-oxo-PDAR) gene expression was upregulated. A slight chlorosis developed in the canopy of whole trees sprayed with coronatine, and chlorophyll content was reduced relative to adjuvant-treated controls. Leaves formed after coronatine application were not chlorotic and had chlorophyll contents similar to controls. Comparison of coronatine to the abscission compounds methyl jasmonate, 5-chloro-3-methyl-4-nitro-pyrazole and ethephon indicated differences in ethylene production and ACO and 12-oxo-PDAR gene expression between treatments. Leaf loss, chlorophyll reduction and low coronatine yield during fermentation must be overcome for coronatine to be seriously considered as an abscission material for citrus.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5331 ◽  
Author(s):  
Sok Sian Liew ◽  
Wan Yong Ho ◽  
Swee Keong Yeap ◽  
Shaiful Adzni Bin Sharifudin

Background Citrus sinensis peels are usually discarded as wastes; however, they are rich sources of Vitamin C, fibre, and many nutrients, including phenolics and flavonoids which are also good antioxidant agents. This study aimed to examine phytochemical composition and antioxidant capabilities of C. sinensis peel extracted conventionally with different methanol/water, ethanol/water, and acetone/water solvents. Methods C. sinensis peels were subjected to extraction with 100%, 70% and 50% of methanol, ethanol, and acetone, respectively, as well as hot water extraction. Antioxidant activities of the peel extracts were examined via the 2,2-diphenylpicrylhydrazyl (DPPH) free radical scavenging activity, ferric reducing antioxidant power (FRAP) assay, and oxygen radical absorbance capacity (ORAC) assay. Total phenolic content and total flavonoid content of the extracts were measured via the Folin-Ciocalteau method and the aluminium chloride colorimetric method, respectively. Phenolic acid and organic acid composition of the peel extracts were further determined via high performance liquid chromatography (HPLC) while flavonoid content was identified via ultra performance liquid chromatography (UPLC). Results DPPH radical scavenging activity of C. sinensis peel extracts varied from 8.35 to 18.20 mg TE/g, FRAP ranged from 95.00 to 296.61 mmol Fe(II)/g, while ORAC value ranged from 0.31 to 0.92 mol TE/g. Significant level of association between the assays was observed especially between TPC and FRAP (R-square = 0.95, P < 0.0001). TPC of various C. sinensis peel extracts ranged from 12.08 to 38.24 mg GAE/g, with 70% acetone/water extract (AEC) showing the highest TPC. TFC ranged from 1.90 to 5.51 mg CE/g. Extraction yield ranged from 0.33 to 0.54 g/g DW and tended to increase with increasing water concentration in the solvent. In the phytochemical investigation, five phenolic acids were identified using HPLC, including gallic acid, protocatechuic acid, 4-hydroxybenzoic acid, caffeic acid and ferulic acid. A total of five organic acids including lactic acid, citric acid, L-mallic acid, kojic acid and ascorbic acid were quantified via HPLC. In addition, concentrations of six flavonoids including catechin, epigallocatechin, vitexin, rutin, luteolin and apigenin were determined via UPLC. Discussion and Conclusion Phytochemicals including phenolics and flavonoids in C. sinensis peel extracts exhibited good antioxidant properties. Among the extracts, 70% AEC with highest TPC and high TFC content showed greatest antioxidant activity in all three assays. Different phenolic acids, organic acids and flavonoids were also identified from the extracts. This study indicated that C. sinensis peels contained potential antioxidant compounds which could be exploited as value added products in the food industry.


2016 ◽  
Vol 242 (11) ◽  
pp. 1961-1974 ◽  
Author(s):  
D. Donno ◽  
M. G. Mellano ◽  
E. Raimondo ◽  
A. K. Cerutti ◽  
Z. Prgomet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document