hplc fingerprint
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 79)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Didi Ma ◽  
Jue Wang ◽  
Guo Yin ◽  
Lijun Wang ◽  
Yibao Jin ◽  
...  

Panax notoginseng (PN) is one of the most valuable traditional Chinese medicines and has extensive pharmacological effects. Recent studies demonstrated that PN exhibited pharmacological effect related to Alzheimer’s disease (AD). However, whether steaming process can boost its anti-AD activity is still unexplored. To fill this gap, effects of steaming durations and temperatures on the chemical characterization, neuroprotective and antioxidant activities of PN were systematically investigated in this study. HPLC fingerprint coupled with quantitative analysis demonstrated striking conversion of original saponins to less polar ones with the increase in the steaming time and temperature. In the viewpoint of anti-AD activity on neuroprotective and antioxidant effects, several steamed PN samples (110°C-6/8/10 h, 120°C ‐4/6 h samples) displayed a significant increase both in cell viability and oxygen radical absorption capacity (ORAC) values compared with the no steamed one ( P < 0.01 or P < 0.005 ). Steaming temperature had the greater impact on the change of chemical composition and anti-AD activity of PN. Moreover, the spectrum-effect relationship analysis revealed that the transformed saponins were partially responsible for the increased neuroprotective and antioxidant effects of steamed PN. Therefore, steamed PN could be used as a potential crude drug for prevention and treatment of AD.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Rongrong Zhang ◽  
Hongyin Zhang ◽  
Shuai Shao ◽  
Yingxin Shen ◽  
Fengqin Xiao ◽  
...  

Abstract Background Atopic dermatitis (AD) is a chronic inflammatory skin disease accompanied with itchy and scaly rash. Compound traditional Chinese medicine dermatitis ointment (CTCMDO) consists of a mixture of extracts from five plants, which had been used in AD treatment due to good anti-inflammatory and anti-allergic effects. Materials and methods In this study, high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometer (LC/MS) were performed to analyze the active ingredients of CTCMDO in detail and to establish its HPLC fingerprint. Furthermore, the anti-inflammatory and antipruritic activities of CTCMDO were studied in the treatment of DNCB-induced AD in mice. Results A total of 44 compounds including phenylpropionic acid compounds, alkaloid compounds, curcumin compounds and lignans were identified via combined HPLC and LC/MS. A fingerprint with 17 common peaks was established. In AD-like mice, DNCB-induced scratching behavior had been suppressed in the treatment of CTCMDO in a dose-dependent manner. Furthermore, the detailed experimental results indicated that the AD can be effectively improved via inhibiting the production of Th1/2 cytokines in serum, reversing the upregulation of substance P levels of itch-related genes in the skin, and suppressing the phosphorylation of JNK, ERK, and p38 in the skin. Conclusion This work indicated that CTCMDO can significantly improve AD via attenuating the pathological alterations of Th1/2 cytokines and itch-related mediators, as well as inhibiting the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB).


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 10
Author(s):  
Olha Mykhailenko ◽  
Vilma Petrikaite ◽  
Michal Korinek ◽  
Fang-Rong Chang ◽  
Mohamed El-Shazly ◽  
...  

Crocus sativus L. (saffron) has been traditionally used as a food coloring or flavoring agent, but recent research has shown its potent pharmacological activity to tackle several health-related conditions. Crocus sp. leaves, and petals are the by-products of saffron production and are not usually used in the medicine or food industries. The present study was designed to determine the chemical composition of the water and ethanolic extracts of C. sativus leaves and test their cytotoxic activity against melanoma (IGR39) and triple-negative breast cancer (MDA-MB-231) cell lines by MTT assay. We also determined their anti-allergic, anti-inflammatory, and anti-viral activities. HPLC fingerprint analysis showed the presence of 16 compounds, including hydroxycinnamic acids, xanthones, flavonoids, and isoflavonoids, which could contribute to the extracts’ biological activities. For the first time, compounds such as tectoridin, iristectorigenin B, nigricin, and irigenin were identified in Crocus leaf extracts. The results showed that mangiferin (up to 2 mg/g dry weight) and isoorientin (8.5 mg/g dry weight) were the major active ingredients in the leaf extracts. The ethanolic extract reduced the viability of IGR39 and MDA-MB-231 cancer cells with EC50 = 410 ± 100 and 330 ± 40 µg/mL, respectively. It was more active than the aqueous extract. Kaempferol and quercetin were identified as the most active compounds. Our results showed that Crocus leaves contain secondary metabolites with potent cytotoxic and antioxidant activities.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7242
Author(s):  
Hongmei Sun ◽  
Yini Cai ◽  
Jie Shen ◽  
Enyao Ma ◽  
Zhimin Zhao ◽  
...  

A method based on high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for the quantitative analysis of three active compounds and chemical fingerprint analyses of saccharides in Morindae officinalis radix. Ten batches of Morindae officinalis radix were collected from different plantations in the Guangdong region of China and used to establish the fingerprint. The samples were separated with a COSMOIL Sugar-D column (4.6 mm × 250 mm, 5 μm) by using gradient elution with water (A) and acetonitrile (B). In addition, Trapped-Ion-Mobility (tims) Time-Of-Flight (tims TOF) was used to identify saccharides of Morindae officinalis radix. Fingerprint chromatogram presented 26 common characteristic peaks in the roots of Morinda officinalis How, and the similarities were more than 0.926. In quantitative analysis, the three compounds showed good regression (r = 0.9995–0.9998) within the test ranges, and the recoveries of the method were in the range of 96.7–101.7%. The contents of sucrose, kestose and nystose in all samples were determined as 1.21–7.92%, 1.02–3.37%, and 2.38–6.55%, respectively. The developed HPLC fingerprint method is reliable and was validated for the quality control and identification of Morindae officinalis radix and can be successfully used to assess the quality of Morindae officinalis radix.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7124
Author(s):  
Cheng Zheng ◽  
Wenting Li ◽  
Yao Yao ◽  
Ying Zhou

A method for the quality evaluation of Atractylodis Macrocephalae Rhizoma (AMR) based on high-performance liquid chromatography (HPLC) fingerprint, HPLC quantification, and chemical pattern recognition analysis was developed and validated. The fingerprint similarity of the 27 batches of AMR samples was 0.887–0.999, which indicates there was very limited variance between the batches. The 27 batches of samples were divided into two categories according to cluster analysis (CA) and principal component analysis (PCA). A total of six differential components of AMR were identified in the partial least-squares discriminant analysis (PLS-DA), among which atractylenolide I, II, III, and atractylone counted 0.003–0.045%, 0.006–0.023%, 0.001–0.058%, and 0.307–1.175%, respectively. The results indicate that the quality evaluation method could be used for quality control and authentication of AMR.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaolei Tang ◽  
Jing Lu ◽  
Haoyuan Chen ◽  
Lu Zhai ◽  
Yuxin Zhang ◽  
...  

Cerebral infarction (CI), a common cerebrovascular disease worldwide, is caused by unknown factors common to many diseases, including hypokalemia, respiratory diseases, and lower extremity venous thrombosis. Tianma Gouteng (TMGT), a traditional Chinese Medicine (TCM) prescription, has been used for the clinical treatment of CI. In this study, high-performance liquid chromatography (HPLC) fingerprint analysis was used to detect and identify major chemical constituents of TMGT. TCMSP and BATMAN-TCM databases were used to screen for active TMGT constituent compounds, while the GeneCards database was used to screen for protein targets associated with CI. Next, GO and KEGG enrichment analysis of these core nodes were performed to determine the identities of key associated biological processes and signal pathways. Meanwhile, a total of six possible gene targets of TMGT, including NFKBIA, PPARG, IL6, IL1B, CXCL8, and HIF1A, were selected for further study using two cellular models of CI. For one model, PC12 cells were treated under oxygen and glucose deprivation (OGD) conditions to generate an OGD cellular model of CI, while for the other model, BV2 cells were stimulated with lipopolysaccharide (LPS) to generate a cellular model of CI-associated inflammation. Ultimately TMGT treatment increased PPARγ expression and downregulated the expression of p-P65, p-IκBα, and HIF-1α in both OGD-induced and LPS-induced cell models of CI. In addition, molecular docking analysis showed that one TMGT chemical constituent, quercetin, may be a bioactive TMGT compound with activity that may be associated with the alleviation of neuronal damage and neuroinflammation triggered by CI. Moreover, additional data obtained in this work revealed that TMGT could inhibit neuroinflammation and protect brain cells from OGD-induced and LPS-induced damage by altering HIF-1α/PPARγ/NF-κB pathway functions. Thus, targeting this pathway through TMGT administration to CI patients may be a strategy for alleviating nerve injury and neuroinflammation triggered by CI.


Sign in / Sign up

Export Citation Format

Share Document