scholarly journals Middle Jurassic zircon age from sandstone within the accretionary complex in the North Kitakami Belt, Kamatsuda area in Iwaizumi Town, Iwate Prefecture, Northeast Japan: Verifying the age of the accretionary complex containing the Okawa Sample

2021 ◽  
Vol 72 (2) ◽  
pp. 99-107
Author(s):  
Takayuki UCHINO
2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


2016 ◽  
Vol 448 (1) ◽  
pp. 145-159 ◽  
Author(s):  
Tianchen He ◽  
Ying Zhou ◽  
Pieter Vermeesch ◽  
Martin Rittner ◽  
Lanyun Miao ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Xin Wang

Angiosperms are the single most important plant group in the current ecosystem. However, little is known about the origin and early evolution of angiosperms. Jurassic and earlier traces of angiosperms have been claimed multiple times from Europe and Asia, but reluctance to accept these records remains. To test the truthfulness of these claims, palaeobotanical records from continents other than Europe and Asia constitute a crucial test. Here I document a new angiosperm fruit, Dilcherifructus mexicana gen. et sp. nov, from the Middle Jurassic of Mexico. Its Jurassic age suggests that origin of angiosperms is much earlier than widely accepted, while its occurrence in the North America indicates that angiosperms were already widespread in the Jurassic, although they were still far away from their ecological radiation, which started in the Early Cretaceous.


2013 ◽  
Vol 150 (6) ◽  
pp. 1103-1126 ◽  
Author(s):  
DETA GASSER ◽  
ARILD ANDRESEN

AbstractThe tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded byc. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.


2020 ◽  
Vol 157 (11) ◽  
pp. 1877-1897 ◽  
Author(s):  
J.-X. Wang ◽  
K.-X. Zhang ◽  
Brian F. Windley ◽  
B.-W. Song ◽  
X.-H. Kou ◽  
...  

AbstractAccretionary orogens contain key evidence for the conversion of oceanic to continental crust. The late tectonic history and closure time of the Palaeo-Asian Ocean are recorded in the Mazongshan subduction–accretion complex in the southern Beishan margin of the Central Asian Orogenic Belt. We present new data on the structure, petrology, geochemistry and zircon U–Pb isotope ages of the Mazongshan subduction–accretion complex, which is a tectonic mélange with a block-in-matrix structure. The blocks are of serpentinized peridotite, basalt, gabbro, basaltic andesite, chert and seamount sediments within a matrix that is mainly composed of fore-arc-trench turbidites. U–Pb zircon ages of two gabbros are 454.6 ± 2.5 Ma and 434.1 ± 3.6 Ma, an andesite has a U–Pb zircon age of 451.3 ± 3.5 Ma and a tuffaceous slate has the youngest U–Pb zircon age of 353.6 ± 5.1 Ma. These new isotopic ages, combined with published data on ophiolitic mélanges from central Beishan, indicate that the subduction–accretion of Beishan in the southernmost Central Asian Orogenic Belt lasted until Late Ordovician – Early Carboniferous time. Structure and age data demonstrate that the younging direction of accretion was southwards and that the subduction zone dipped continuously to the north. Accordingly, these results record the conversion of oceanic to continental crust in the southern Beishan accretionary collage.


1961 ◽  
Vol S7-III (6) ◽  
pp. 588-598 ◽  
Author(s):  
J. C. Fischer

Abstract Stratigraphy of the Dogger (middle Jurassic) in the southwestern part of the Paris basin, at the north border of the Central Massif is very poorly known because facies are monotonous and outcrops and fossils are scarce. A starting point for working out the stratigraphy is provided by the Creuse river valley, from Argenton-sur-Creuse northwestward to St. Gaultier. Stratigraphic correlations with the southeastern part of the Paris basin were made from 21 good outcrops in the Creuse valley area despite the lack of characteristic ammonites. Dogger formations total more than 100 m thickness, chiefly marine neritic limestones, with intercalated marl in the upper portion. Several meters of lagoonal marl and lignite above the base of the Dogger are transitional from lower to middle Bathonian (upper Dogger). Brachiopods and corals, including reef types, are the chief means of correlation.


2019 ◽  
Vol 61 (16) ◽  
pp. 2021-2035 ◽  
Author(s):  
Ömer Faruk Çelik ◽  
Gültekin Topuz ◽  
Zeki Billor ◽  
Mutlu Özkan

Sign in / Sign up

Export Citation Format

Share Document