scholarly journals Estimation Method for Wind Load of Building Using Spatial Information

2019 ◽  
Vol 19 (6) ◽  
pp. 11-17
Author(s):  
Sang Seung Lee ◽  
Tae Hwan Kim ◽  
Eun Su Seo ◽  
Se Hyu Choi
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Huili Xue ◽  
Kun Lin ◽  
Yin Luo ◽  
Hongjun Liu

A minimum-variance unbiased estimation method is developed to identify the time-varying wind load from measured responses. The formula derivation of recursive identification equations is obtained in state space. The new approach can simultaneously estimate the entire wind load and the unknown structural responses only with limited measurement of structural acceleration response. The fluctuating wind speed process is investigated by the autoregressive (AR) model method in time series analysis. The accuracy and feasibility of the inverse approach are numerically investigated by identifying the wind load on a twenty-story shear building structure. The influences of the number and location of accelerometers are examined and discussed. In order to study the stability of the proposed method, the effects of the errors in crucial factors such as natural frequency and damping ratio are discussed through detailed parametric analysis. It can be found from the identification results that the proposed method can identify the wind load from limited measurement of acceleration responses with good accuracy and stability, indicating that it is an effective approach for estimating wind load on building structures.


Author(s):  
Toshifumi Fujiwara ◽  
Kazuhiro Yukawa ◽  
Hiroshi Sato ◽  
Kazuhisa Otsubo ◽  
Tomoki Taniguchi

Liquid Natural Gas resource development is often conducted worldwide. Recently the drilling area has gradually expanded from shallow sea area to the deep ocean. A Floating LNG facility (FLNG) and a LNG carrier ship (LNG) are assumed to operate in the open sea expected to wind, wave and current. In this situation, an operational capability evaluation of the LNG would be needed to grasp the operational weather limitation. The effect of each weather element, i.e. wind, wave and current, giving manoeuvring effect to ships, is expected to assess exactly as external loads. In such a situation, wind interaction effect under the operating condition that a FLNG and a LNG are in same closed area is not clearly understood. This paper treats and proposes one estimation method of wind load for the operation of side-by-side offloading including interaction effect of a FLNG and a LNG. The proposed wind load estimation method based on the wind tunnel experiments represents the shielding effect of the LNG behind the FLNG. Operational assessment on ship manoeuvring under strong wind is calculated using the proposed wind load method in the final stage.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 762
Author(s):  
Alfonso García-Pérez

Let Z(s)=(Z1(s),…,Zp(s))t be an isotropic second-order stationary multivariate spatial process. We measure the statistical association between the p random components of Z with the correlation coefficients and measure the spatial dependence with variograms. If two of the Z components are correlated, the spatial information provided by one of them can improve the information of the other. To capture this association, both within components of Z(s) and across s, we use a cross-variogram. Only two robust cross-variogram estimators have been proposed in the literature, both by Lark, and their sample distributions were not obtained. In this paper, we propose new robust cross-variogram estimators, following the location estimation method instead of the scale estimation one considered by Lark, thus extending the results obtained by García-Pérez to the multivariate case. We also obtain accurate approximations for their sample distributions using saddlepoint techniques and assuming a multivariate-scale contaminated normal model. The question of the independence of the transformed variables to avoid the usual dependence of spatial observations is also considered in the paper, linking it with the acceptance of linear variograms and cross-variograms.


2018 ◽  
Vol 76 (1) ◽  
pp. 255-267 ◽  
Author(s):  
Brian C Stock ◽  
Eric J Ward ◽  
James T Thorson ◽  
Jason E Jannot ◽  
Brice X Semmens

Abstract Quantifying effects of fishing on non-targeted (bycatch) species is an important management and conservation issue. Bycatch estimates are typically calculated using data collected by on-board observers, but observer programmes are costly and therefore often only cover a small percentage of the fishery. The challenge is then to estimate bycatch for the unobserved fishing activity. The status quo for most fisheries is to assume the ratio of bycatch to effort is constant and multiply this ratio by the effort in the unobserved activity (ratio estimator). We used a dataset with 100% observer coverage, 35 440 hauls from the US west coast groundfish trawl fishery, to evaluate the ratio estimator against methods that utilize fine-scale spatial information: generalized additive models (GAMs) and random forests. Applied to 15 species representing a range of bycatch rates, including spatial locations improved model predictive ability, whereas including effort-associated covariates generally did not. Random forests performed best for all species (lower root mean square error), but were slightly biased (overpredicting total bycatch). Thus, the choice of bycatch estimation method involves a tradeoff between bias and precision, and which method is optimal may depend on the species bycatch rate and how the estimates are to be used.


2020 ◽  
Vol 8 (7) ◽  
pp. 539
Author(s):  
Jasna Prpić-Oršić ◽  
Marko Valčić ◽  
Zoran Čarija

The estimation of wind loads on ships and other marine objects represents a continuous challenge because of its implication for various aspects of exposed structure exploitation. An extended method for estimating the wind loads on container ships is presented. The method uses the Generalized Regression Neural Network (GRNN), which is trained with Elliptic Fourier Descriptors (EFD) of sets of frontal and lateral closed contours as inputs. Wind load coefficients (Cx, Cy, CN), used as outputs for network training, are derived from 3D steady RANS CFD analysis. This approach is very suitable for assessing wind loads on container ships wherever there is a wind load database for a various container configuration. In this way, the cheaper and faster calculation can bridge the gap for the container configurations for which calculations or experiments have not already been made. The results obtained by trained GRNN are in line with available experimental measurements of the wind loads on various container configuration on the deck of a 9000+ TEU container ship obtained through a series of wind tunnel tests, as well as with performed CFD simulation for the same conditions.


2019 ◽  
Vol 19 (6) ◽  
pp. 1-9
Author(s):  
Eung Joon Lee ◽  
Eun Su Seo ◽  
Tae Hwan Kim ◽  
Se Hyu Choi

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Lei ◽  
Li Tong ◽  
Bin Yan

Brain state decoding or “mind reading” via multivoxel pattern analysis (MVPA) has become a popular focus of functional magnetic resonance imaging (fMRI) studies. In brain decoding, stimulus presentation rate is increased as fast as possible to collect many training samples and obtain an effective and reliable classifier or computational model. However, for extremely rapid event-related experiments, the blood-oxygen-level-dependent (BOLD) signals evoked by adjacent trials are heavily overlapped in the time domain. Thus, identifying trial-specific BOLD responses is difficult. In addition, voxel-specific hemodynamic response function (HRF), which is useful in MVPA, should be used in estimation to decrease the loss of weak information across voxels and obtain fine-grained spatial information. Regularization methods have been widely used to increase the efficiency of HRF estimates. In this study, we propose a regularization framework called mixed L2 norm regularization. This framework involves Tikhonov regularization and an additional L2 norm regularization term to calculate reliable HRF estimates. This technique improves the accuracy of HRF estimates and significantly increases the classification accuracy of the brain decoding task when applied to a rapid event-related four-category object classification experiment. At last, some essential issues such as the impact of low-frequency fluctuation (LFF) and the influence of smoothing are discussed for rapid event-related experiments.


Sign in / Sign up

Export Citation Format

Share Document