scholarly journals Stratigraphy and petrophysical characteristics of Lower Paleocene cool-water carbonates, Faxe quarry, Denmark

2021 ◽  
Vol 69 ◽  
pp. 97-121
Author(s):  
Jens Martin Hvid ◽  
Frans van Buchem ◽  
Frank Andreasen ◽  
Emma Sheldon ◽  
Ida Lykke Fabricius

The Faxe limestone quarry in eastern Denmark exposes Danian (Lower Paleocene) cool-water carbonate deposits. They constitute remnants of an apparent build-up that covers about 12 km2 today. The Danian deposits at Faxe are conspicuous due to their pronounced thickness of coral limestone relative to the regional carbonate system. In the Faxe quarry, scleractinian corals are uniquely exposed in up to 30 m high mounds. The rapid accumulation of scleractinians combined with induration of the mounds may locally have protected the limestone from Quaternary glacial erosion and created a Danian thickness anomaly at Faxe. The position of Faxe above a local fault-bounded basement high and the extent of coral limestone has been better defined by new mapping. A mapped lithostratigraphic surface in the quarry reveals the large-scale organisation of nested bryozoan mounds on three elongated ridges striking NW–SE. The main scleractinian coral mounds are located above this horizon. Data for reservoir characterisation, mainly of the bryozoan mounds, were collected as photographs of the outcrop, petrophysical and petrographical data from cored boreholes, and as ground-penetrating radar sections. Old boreholes and measured sections were used to reconstruct the build-up, and new nannofossil data allow a discussion of stratigraphy and accumulation rate. The petrophysical data show that common mound-building bryozoan packstone has higher permeability and lower capillary entry pressure than chalk, whereas less commonly occurring grain-dominated packstone and grainstone deposits from local higher-energy sites of the mound complex were found to have reduced amounts of coccolith mud, significantly higher permeability and a higher degree of lithification. Based on biostratigraphic age constraints, correlation of flint – limestone couplets and recog-nised hierarchical patterns, we develop a cyclostratigraphy for the middle Danian and suggest that cyclicity in lithology and petrophysical characteristics of bryozoan limestone are controlled by precession and eccentricity of the orbit of the Earth.

2008 ◽  
Vol 54 (185) ◽  
pp. 315-323 ◽  
Author(s):  
Helgard Anschütz ◽  
Daniel Steinhage ◽  
Olaf Eisen ◽  
Hans Oerter ◽  
Martin Horwath ◽  
...  

AbstractSpatio-temporal variations of the recently determined accumulation rate are investigated using ground-penetrating radar (GPR) measurements and firn-core studies. The study area is located on Ritscherflya in western Dronning Maud Land, Antarctica, at an elevation range 1400–1560 m. Accumulation rates are derived from internal reflection horizons (IRHs), tracked with GPR, which are connected to a dated firn core. GPR-derived internal layer depths show small relief along a 22 km profile on an ice flowline. Average accumulation rates are about 190 kg m−2 a−1 (1980–2005) with spatial variability (1σ) of 5% along the GPR profile. The interannual variability obtained from four dated firn cores is one order of magnitude higher, showing 1σ standard deviations around 30%. Mean temporal variations of GPRderived accumulation rates are of the same magnitude or even higher than spatial variations. Temporal differences between 1980–90 and 1990–2005, obtained from two dated IRHs along the GPR profile, indicate temporally non-stationary processes, linked to spatial variations. Comparison with similarly obtained accumulation data from another coastal area in central Dronning Maud Land confirms this observation. Our results contribute to understanding spatio-temporal variations of the accumulation processes, necessary for the validation of satellite data (e.g. altimetry studies and gravity missions such as Gravity Recovery and Climate Experiment (GRACE)).


2021 ◽  
Author(s):  
Giorgia Camperio ◽  
Caroline Welte ◽  
S. Nemiah Ladd ◽  
Matthew Prebble ◽  
Nathalie Dubois

<p>Espiritu Santo is one of the 82 islands of the archipelago of Vanuatu and is the largest, highest, and most biodiverse of the insular country. Climatic changes linked to El Niño and extreme events such as cyclones and volcanic eruptions are a daily challenge in this remote area. These events can be recorded in sedimentary archives. Here we present a multi-proxy investigation of sediment cores retrieved from two small lakes located on the West coast of Espiritu Santo. Although the records span the last millennium, high-resolution radiocarbon dating of macrofossils reveals a rapid accumulation of sediment in the past 100 years. The high accumulation rate coupled with the high-resolution dating of freshwater sediments allows us to compare the <sup>14</sup>C bomb curve with the biogeochemical proxies of the sedimentary records. The results can then be validated against written and oral historical records linked with the societal perception of recent environmental changes in this vulnerable ecosystem.</p><div> <div title="Translate selected text"></div> <div title="Play"></div> <div title="Copy text to Clipboard"></div> </div>


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Andrius Serva ◽  
Christoph Claas ◽  
Vytaute Starkuviene

In the last years miRNAs have increasingly been recognised as potent posttranscriptional regulators of gene expression. Possibly, miRNAs exert their action on virtually any biological process by simultaneous regulation of numerous genes. The importance of miRNA-based regulation in health and disease has inspired research to investigate diverse aspects of miRNA origin, biogenesis, and function. Despite the recent rapid accumulation of experimental data, and the emergence of functional models, the complexity of miRNA-based regulation is still far from being well understood. In particular, we lack comprehensive knowledge as to which cellular processes are regulated by which miRNAs, and, furthermore, how temporal and spatial interactions of miRNAs to their targets occur. Results from large-scale functional analyses have immense potential to address these questions. In this review, we discuss the latest progress in application of high-content and high-throughput functional analysis for the systematic elucidation of the biological roles of miRNAs.


Paleobiology ◽  
2015 ◽  
Vol 41 (4) ◽  
pp. 610-632 ◽  
Author(s):  
Phoebe A. Cohen ◽  
Francis A. Macdonald

AbstractProterozoic strata host evidence of global “Snowball Earth” glaciations, large perturbations to the carbon cycle, proposed changes in the redox state of oceans, the diversification of microscopic eukaryotes, and the rise of metazoans. Over the past half century, the number of fossils described from Proterozoic rocks has increased exponentially. These discoveries have occurred alongside an increased understanding of the Proterozoic Earth system and the geological context of fossil occurrences, including improved age constraints. However, the evaluation of relationships between Proterozoic environmental change and fossil diversity has been hampered by several factors, particularly lithological and taphonomic biases. Here we compile and analyze the current record of eukaryotic fossils in Proterozoic strata to assess the effect of biases and better constrain diversity through time. Our results show that mean within assemblage diversity increases through the Proterozoic Eon due to an increase in high diversity assemblages, and that this trend is robust to various external factors including lithology and paleogeographic location. In addition, assemblage composition changes dramatically through time. Most notably, robust recalcitrant taxa appear in the early Neoproterozoic Era, only to disappear by the beginning of the Ediacaran Period. Within assemblage diversity is significantly lower in the Cryogenian Period than in the preceding and following intervals, but the short duration of the nonglacial interlude and unusual depositional conditions may present additional biases. In general, large scale patterns of diversity are robust while smaller scale patterns are difficult to discern through the lens of lithological, taphonomic, and geographic variability.


Author(s):  
Hamed Faghihi Kashani ◽  
Carlton L. Ho ◽  
Charles P. Oden ◽  
Stanley S. Smith

In recent years there has been an increase in the knowledge of, and need for, non-invasive monitoring of ballast in order to identify the problematic sections of track and decrease the maintenance cost. Various technologies such as Ground Penetrating Radar (GPR) are becoming accepted for investigating the condition of ballast. However since these techniques were not originally developed for engineering applications, their applicability in ballast evaluations can be sometimes uncertain. Continued empirical studies and condition specific calibrations are needed to demonstrate repeatable and quantifiable results. In this study large-scale track models with trapezoidal section area were constructed at the University of Massachusetts to investigate the effects of breakdown fouling, and the effects of changing geotechnical properties on GPR traces. This paper presents the design and construction of large scale track models, and methods used for GPR data collection. GPR data are presented in this paper that demonstrate sensitivity to the track model properties and variables. In particular, the experiments are being used to evaluate changes in GPR data with changing geotechnical properties of the ballast such as density, water content, grain size distribution (GSD), and fouling percentage.


2020 ◽  
Vol 61 (81) ◽  
pp. 214-224 ◽  
Author(s):  
Nanna B. Karlsson ◽  
Sebastian Razik ◽  
Maria Hörhold ◽  
Anna Winter ◽  
Daniel Steinhage ◽  
...  

AbstractThe internal stratigraphy of snow and ice as imaged by ground-penetrating radar may serve as a source of information on past accumulation. This study presents results from two ground-based radar surveys conducted in Greenland in 2007 and 2015, respectively. The first survey was conducted during the traverse from the ice-core station NGRIP (North Greenland Ice Core Project) to the ice-core station NEEM (North Greenland Eemian Ice Drilling). The second survey was carried out during the traverse from NEEM to the ice-core station EGRIP (East Greenland Ice Core Project) and then onwards to Summit Station. The total length of the radar profiles is 1427 km. From the radar data, we retrieve the large-scale spatial variation of the accumulation rates in the interior of the ice sheet. The accumulation rates range from 0.11 to 0.26 m a−1 ice equivalent with the lowest values found in the northeastern sector towards EGRIP. We find no evidence of temporal or spatial changes in accumulation rates when comparing the 150-year average accumulation rates with the 321-year average accumulation rates. Comparisons with regional climate models reveal that the models underestimate accumulation rates by up to 35% in northeastern Greenland. Our results serve as a robust baseline to detect present changes in either surface accumulation rates or patterns.


Sign in / Sign up

Export Citation Format

Share Document