Seasonal residency, activity space, and use of deep-water channels by Greenland sharks (Somnious microcephalus) in an Arctic fjord system

Author(s):  
Jena Elizabeth Edwards ◽  
Kevin J. Hedges ◽  
Nigel E. Hussey

As Arctic ecosystems become increasingly vulnerable to climate- and human-induced stressors, effective marine management will rely on the characterization of fish movements. Over a six-year study period, the movements of 65 Greenland sharks (Somniosus microcephalus) (41 males, 24 females [mean LT = 2.48 ± 0.50 m]) were monitored using static acoustic telemetry. Shark presence in a typical deep-water fjord was restricted to the summer open-water period. Residency duration varied based on age-class (juvenile [n=17] vs. subadult [n=48]), however, activity space size and extent were comparable. A quarter of tagged sharks (n=16) returned to the system in subsequent years after tagging, with individuals re-detected for a maximum of 4 y. Movements between coastal and offshore waters occurred primarily via a deep-water channel with sharks detected along the channel banks. These multi-year data depict how a potentially vulnerable Arctic predator utilizes a deep-water fjord in the context of the regional development of community inshore and offshore commercial fisheries.

Author(s):  
Domenica Mirauda ◽  
Antonio Volpe Plantamura ◽  
Stefano Malavasi

This work analyzes the effects of the interaction between an oscillating sphere and free surface flows through the reconstruction of the flow field around the body and the analysis of the displacements. The experiments were performed in an open water channel, where the sphere had three different boundary conditions in respect to the flow, defined as h* (the ratio between the distance of the sphere upper surface from the free surface and the sphere diameter). A quasi-symmetric condition at h* = 2, with the sphere equally distant from the free surface and the channel bottom, and two conditions of asymmetric bounded flow, one with the sphere located at a distance of 0.003m from the bottom at h* = 3.97 and the other with the sphere close to the free surface at h* = 0, were considered. The sphere was free to move in two directions, streamwise (x) and transverse to the flow (y), and was characterized by values of mass ratio, m* = 1.34 (ratio between the system mass and the displaced fluid mass), and damping ratio, ζ = 0.004. The comparison between the results of the analyzed boundary conditions has shown the strong influence of the free surface on the evolution of the vortex structures downstream the obstacle.


2021 ◽  
Author(s):  
Gennadii Borisenko ◽  
Alexander Polukhin ◽  
Valentina Sergeeva

<p>In the frames of the scientific program “Investigation of the Russian Arctic ecosystems” in 2007-2020 held by Shirshov Institute of Oceanology, comprehensive studies of the bays of the Novaya Zemlya archipelago (NZA) were carried out. There is very little information in the scientific literature on the dynamics and hydrochemical structure of the waters of the bays. Our investigations have revealed that the concentration of nutrients (first of all, nitrates and silicate) in the bays of NZA was higher than in the surrounding water area of ​​the Kara Sea. The most well studied and open for investigations is the Blagopoluchiya Bay in the northern island of NZA. Blagopoluchiya Bay is a fjord-type bay with several streams of the glacier origin.</p><p>The concentrations of nutrients (N, P, Si, C) in the streams were observed in August-September (0-1.53 µM of PO<sub>4</sub><sup>3-</sup>, 6.4-50.2 µM of SiO<sub>3</sub><sup>2-</sup>, 0.6-11.2 µM of NO<sub>2</sub><sup>-</sup>+NO<sub>3</sub><sup>-</sup>, 732-4815 µM of DIC). The observed content of nutrients in the waters of the bay was on average 2 times lower, but not lower than the level limiting the development of phytoplankton.</p><p>We suppose that high concentrations of nutrients in NZA bays in August-September were supported by increasing glacial runoff from NZA during the summer open water period and the removal of products of degradation of shore rocks with it. Despite the constant enrichment of nutrients, the concentration of phytoplankton in Blagopoluchiya Bay was extremely low (0.2-0.7 mkgC/l) in comparison with the adjacent marine part of the Kara Sea in all years of research.  Perhaps it was due to osmostress of planktonic algae during desalination of the bay by the NZA runoff.</p><p>This work was supported by the State Agreement of The Ministry of Science and Education of Russian Federation (theme №0128-2019-0008); Russian Foundation for Basic Research project 18-05-60069 (processing hydrochemistry data); Russian Scientific Foundation project 19-17-00196 (data obtaining); by the Grant of the President of the Russian Federation MK-860.2020.5 (processing carbonate chemistry data).</p>


AAPG Bulletin ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 609-627 ◽  
Author(s):  
Shirley P. Dutton ◽  
William A. Flanders ◽  
Mark D. Barton

1980 ◽  
Vol 17 (7) ◽  
pp. 831-854 ◽  
Author(s):  
R. H. Fillon ◽  
J. C. Duplessy

A stratigraphic framework for eastern Labrador Sea cores has been developed for the interval 0–90 000 years BP through analysis of oxygen isotopes, volcanic ash, benthonic foraminifera, and the radiolarian Diplocyclas davisiana. Benthonic and planktonic foraminiferal isotope stratigraphy and the time scale of Shackleton and Opdyke provide a basis for the approximate dating of a series of marker events which include ash zones at ca. 59 000 and ≤ 21 000 years BP; benthonic foraminiferal abundance maxima at ca. 83 000, 75 000, 60 000, 19 000, and 3000 years BP; and D. davisiana percentage maxima at ca. 90 000, 73 000, 64 000, 54 000, 45 000 – 32 000, and 10 000 years BP. Incursions of subpolar planktonic foraminifera into the area during parts of isotopic stage 2 (between about 13 000 and 25 000 years BP but probably excluding the 15 000–18 000 years BP glacial maximum interval) and during the isotopic stage 4/5a transition (around 75 000 years BP) suggest that the eastern Labrador Sea was free of sea ice, at least in summer during periods of rapid continental ice sheet growth which lead to the isotopic stage 4 and stage 2 glacial maxima. A larger than normal stage 1/stage 2 difference in the isotopic composition of benthonic foraminifera (1.8‰) implies that this open water and attendant surface cooling was a potential source for colder than modern deep water. In contrast the Norwegian Sea was a reservoir of warmer than modern deep water during the last glacial.


2021 ◽  
Author(s):  
Marina Dottore Stagna ◽  
Vittorio Maselli ◽  
Djordje Grujic ◽  
Pamela Reynolds ◽  
David Reynolds ◽  
...  

<p>The East African Rift Systems (EARS) is a modern example of a divergent plate boundary at early stages of development. In Tanzania, the rift has evolved in two branches since the Early Miocene. In addition, recent studies have proposed the existence of a marine branch of the rift in the western Indian Ocean, corresponding to the Kerimbas Graben – Davie Ridge (DR) system offshore northern Mozambique and southern Tanzania. North of this region, putative passive margin structures are present: the islands of Zanzibar and Pemba, and the troughs that separate them from the mainland. Although different theories for their formation have been proposed, a clear understanding of how the islands relate to the regional tectonic regime and the effect on the deep-water sediment routing system is lacking. </p><p>In this study, we use 2D seismic reflection profiles and exploration wells to investigate the Oligocene to recent stratigraphy offshore northern Tanzania to examine the following two questions: When did the Pemba and Zanzibar islands form? And how does the evolution of deep-water depositional systems record rift tectonics? Regional correlation of dated seismic horizons, integrated with 3D reconstruction of canyons/channels network through time, allow understanding of the main depositional events and their timing. A net decrease in the number of slope channels is visible offshore Pemba during the middle-late Miocene, which we interpreted to mark the onset of the uplift of the island. At the same time, deep-water channels were still aggrading offshore Zanzibar, indicating that the uplift of this island occurred later, likely during the late Miocene to early Pliocene. The uplift of the islands promoted the formation of a newly discovered giant canyon, characterized by a modern width of > 30 km and depth of > 485 m at > 2,200 m water depth.</p><p>The timing of the islands’ uplift indicates a potential relation with the EARS tectonics. While the structures which form the anticlines of Pemba and Zanzibar Islands may be related to Tertiary (EARS) inversion of Mesozoic-aged rift faults,  numerous high-angle normal faults, both antithetic and synthetic, dissect the post-Oligocene stratigraphy. These create horsts and grabens on a variety of scales, some of which (e.g. Kerimbas Graben and Zanzibar/Pemba trough) show comparative shape and size respect to onshore rift basins. The stratigraphic evolution of deep-water channel systems provides a tape-recorder with which to determine the modification of EARS’ tectonics on sedimentation of the older Tanzania margin.</p><p>Supported by these new results, we propose a new alternative conceptual model for the evolution of the central East African margin during the Neogene and Quaternary, highlighting the main tectonic structures and their timing of formation.</p>


Sign in / Sign up

Export Citation Format

Share Document